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Amp is an open-source package designed to easily bring machine-learning to atomistic calculations. This project
is being developed at Brown University in the School of Engineering, primarily by Andrew Peterson and Alireza
Khorshidi, and is released under the GNU General Public License.

The latest stable release of Amp is version 1.0.1, released on January 25, 2023; see the Release notes page for a
download link. Please see the project’s git repository for the latest development version or a place to report an issue.

You can read about Amp in the below paper; if you find this project useful, we would appreciate if you cite this work:

Khorshidi & Peterson, “Amp: A modular approach to machine learning in atomistic simulations”, Com-
puter Physics Communications 207:310-324, 2016.

An amp-users mailing list exists for general discussions about the use and development of Amp. You can subscribe
via listserv at:

https://listserv.brown.edu/?SUBED1=AMP-USERS&A=1

Amp is now part of the Debian archives! This means it will soon be available via your package manager in linux
releases like Ubuntu.

Amp is now installable via pip! This means you should be able to install with just:

$ pip3 install amp-atomistics

Manual:
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CHAPTER 1

Introduction

Amp is an open-source package designed to easily bring machine-learning to atomistic calculations. This allows
one to predict (or really, interpolate) calculations on the potential energy surface, by first building up a regression
representation from a “training set” of atomic images. The Amp calculator works by first learning from any other
calculator (usually quantum mechanical calculations) that can provide energy and forces as a function of atomic
coordinates. Depending upon the model choice, the predictions from Amp can take place with arbitrary accuracy,
approaching that of the original calculator.

Amp is designed to integrate closely with the Atomic Simulation Environment (ASE). As such, the interface is in
pure python, although several compute-heavy parts of the underlying codes also have fortran versions to accelerate the
calculations. The close integration with ASE means that any calculator that works with ASE - including EMT, GPAW,
DACAPO, VASP, NWChem, and Gaussian - can easily be used as the parent method.
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CHAPTER 2

Installation

Amp is python-based and is designed to integrate closely with the Atomic Simulation Environment (ASE). Because of
this tight integration, Amp is compatible with every major electronic structure calculator and has ready access to all
standard atomistic methods, such as structure optimization or molecular dynamics. In its most basic form, it has few
requirements:

• Python, version 3.6 is recommended (but Python 2 is still supported)

• ASE

• NumPy + SciPy

To get more features, such as parallelization in training, a few more packages are recommended:

• Pexpect (or pxssh)

• ZMQ (or PyZMQ, the python version ofØMQ).

Certain advanced modules may contain dependencies that will be noted when they are used; for example Tensorflow
for the tflow module or matplotlib (version > 1.5.0) for the plotting modules.

We have three suggested means of installation, depending on your needs:

• via Pip (python’s automatic package installer)

• via Ubuntu’s package manager,

• or manual installation.

After you install, you should run the tests.

2.1 Pip

You can install quickly with using pip; if you have pip installed, you should be able to install the latest release quickly
with:
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$ pip3 install numpy
$ pip3 install amp-atomistics

If you already have numpy you should be able to skip the first line. If you would rather have the development version,
replace the second line with:

$ pip3 install git+https://bitbucket.org/andrewpeterson/amp

Note that you may want to also supply the –user flag to pip3, which will install only in your home directory and not
system wide. Another good strategy is to install inside of a virtualenv. You will need to take one of these approaches
if installing on your own account within a cluster, for example.

If you see errors relating to fortran, make sure you have an f77 compiler installed (such as gfortran). If you see an
error related to Python.h, make sure you have a version of python meant for compiling (e.g., python3-dev on ubuntu).

2.2 Ubuntu’s package manager

If you use Debian or Ubuntu, Amp is now included in the package manager, and you can install just like any other
program (e.g., through ‘Ubuntu Software’ or ‘synaptic’ package manager). Or most simply, just type:

$ sudo apt install python3-amp

Note that there is a long lead time between when we submit a package to Debian/Ubuntu and when it is included in an
official release, so this version will typically be a bit old.

2.3 Manual installation

If the above fails, or you want to have your own version of the code that you can hack away on, you should try the
manual installation, by following the below procedure.

Python version. We recommend Python 3.6. However, if you are Python 2 user the code will also work in Python 2
indefinitely. (But you should really change over to 3!)

Install ASE. We always test against the latest release of ASE, but slightly older versions (>=3.9) are likely to work
as well. Follow the instructions at the ASE website. ASE itself depends upon python with the standard numeric and
scientific packages. Verify that you have working versions of NumPy and SciPy. We also recommend matplotlib
(version > 1.5.0) in order to generate plots. After you are successful, you should be able to run the following without
errors:

$ python3
>>> import ase
>>> import numpy
>>> import scipy
>>> import matplotlib

Get the code. You can download a stable (numbered) release, which is citable by DOI, via the links on the
Release Notes page. You should make sure that the documentation that you are reading corresponds to the re-
lease you have downloaded; the documentation is included in the package or you can choose a version number on
http://amp.readthedocs.io.

We are constantly improving Amp and adding features, so depending on your needs it may be preferable to use the
development version rather than “stable” releases. We run daily unit tests to try to make sure that our development
code works as intended. We recommend checking out or downloading the latest version of the code via the project’s
bitbucket page. If you use git, check out the code with:
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$ cd ~/path/to/my/codes
$ git clone https://andrewpeterson@bitbucket.org/andrewpeterson/amp.git

where you should replace ‘~/path/to/my/codes’ with wherever you would like the code to be located on your computer.

Simple option: use setup.py. After you have downloaded the code, the fastest way to compile it is by running (from
inside the amp directory):

$ python setup.py install --user

If that works, you are done! If it doesn’t work or you want to use the fully manual option, keep reading.

Set the environment. You need to let your python version know where to find Amp. Add the following line to your
‘.bashrc’ (or other appropriate spot), with the appropriate path substituted for ‘~/path/to/my/codes’:

$ export PYTHONPATH=~/path/to/my/codes/amp:$PYTHONPATH

You can check that this works by starting python and typing the below command, verifying that the location listed
from the second command is where you expect:

>>> import amp
>>> print(amp.__file__)

See also the section on parallel processing (in Using Amp) for any issues that arise in making the environment work
with Amp in parallel.

Recommended: Build fortran modules. Amp works in pure python, however, it will be annoyingly slow unless the
associated Fortran modules are compiled to speed up several parts of the code. The compilation of the Fortran code
and integration with the python parts is accomplished with f2py, which is part of NumPy. A Fortran compiler will also
be necessary on the system; a reasonable open-source option is GNU Fortran, or gfortran. This compiler will generate
Fortran modules (.mod). gfortran will also be used by f2py to generate extension module fmodules.so on Linux or
fmodules.pyd on Windows. We have included a Makefile that automatizes the building of Fortran modules. To use it,
install GNU Makefile on your Linux distribution or macOS. Then you can simply do:

$ cd <installation-directory>/amp/
$ make

Note that you have to make sure your f2py is pointing to the right Python version.

If you do not have the GNU Makefile installed, you can prepare the Fortran extension modules manually in the
following steps:

1. Compile model Fortran subroutines inside the model and descriptor folders by:

$ cd <installation-directory>/amp/model
$ gfortran -c neuralnetwork.f90
$ cd ../descriptor
$ gfortran -c cutoffs.f90

2. Move the modules “neuralnetwork.mod” and “cutoffs.mod” created in the last step, to the parent directory by:

$ cd ..
$ mv model/neuralnetwork.mod .
$ mv descriptor/cutoffs.mod .

3. Compile the model Fortran subroutines in companion with the descriptor and neuralnetwork subroutines by
something like:

2.3. Manual installation 7
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$ f2py -c -m fmodules model.f90 descriptor/cutoffs.f90 descriptor/gaussian.f90
→˓descriptor/zernike.f90 model/neuralnetwork.f90

Note that for Python3, you need to use f2py3 instead of f2py.

or on a Windows machine by:

$ f2py -c -m fmodules model.f90 descriptor/cutoffs.f90 descriptor/gaussian.f90
→˓descriptor/zernike.f90 model/neuralnetwork.f90 --fcompiler=gnu95 --compiler=mingw32

Note that if you update your code (e.g., with ‘git pull origin master’) and the fortran code changes but your version of
fmodules.f90 is not updated, an exception will be raised telling you to re-compile your fortran modules.

2.4 Run the tests

We include tests in the package to ensure that it still runs as intended as we continue our development; we run these
tests automatically with every commit (on bitbucket) to try to keep bugs out. It is a good idea to run these tests after
you install the package to see if your installation is working. The tests are in the folder tests; they are designed to run
with nose. If you have nose and GNU Makefile installed, simply do:

$ make py2tests # (for Python2)
$ make py3tests # (for Python3)

This will create a temporary directory and run the tests there. Otherwise, if you have only nose installed (and not GNU
Makefile), run the commands below:

$ mkdir <installation-directory>/tests/amptests
$ cd <installation-directory>/tests/amptests
$ nosetests -v ../../

8 Chapter 2. Installation
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CHAPTER 3

Using Amp

If you are familiar with ASE, the use of Amp should be intuitive. At its most basic, Amp behaves like any other ASE
calculator, except that it has a key extra method, called train(), which allows you to fit the calculator to a set of
atomic images. This means you can use Amp as a substitute for an expensive calculator in any atomistic routine, such
as molecular dynamics, global optimization, transition-state searches, normal-mode analyses, phonon analyses, etc.

3.1 Basic use

To use Amp, you need to specify a descriptor and a model. The below shows a basic example of training Amp with
Gaussian descriptors and a NeuralNetwork model—the Behler-Parinello scheme.

from amp import Amp
from amp.descriptor.gaussian import Gaussian
from amp.model.neuralnetwork import NeuralNetwork

calc = Amp(descriptor=Gaussian(), model=NeuralNetwork(),
label='calc')

calc.train(images='my-images.traj')

After training is successful you can use your trained calculator just like any other ASE calculator (although you
should be careful that you can only trust it within the trained regime). This will also result in the saving the calculator
parameters to “<label>.amp”, which can be used to re-load the calculator in a future session:

calc = Amp.load('calc.amp')

The modular nature of Amp is meant such that you can easily mix-and-match different descriptor and model schemes.
See the theory section for more details.

9
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3.2 Adjusting convergence parameters

To control how tightly the energy and/or forces are converged, you can adjust the LossFunction. Just insert before
the calc.train line some code like:

calc.model.lossfunction.parameters['convergence'].update(
{'energy_rmse': None,
'force_maxresid': 0.04})

You can see the adjustable parameters and their default values in the dictionary default_parameters:

>>> from amp.model import LossFunction
>>> LossFunction.default_parameters
{'convergence': {'energy_rmse': 0.001, 'force_rmse': None, 'energy_maxresid': None,
→˓'force_maxresid': None}}

Note that you can also set a maximum residual of any energy or force prediction with the appropriate keywords above.

To change how the code manages the regression process, you can use the Regressor class. For example, to switch
from the scipy’s fmin_bfgs optimizer (the default) to scipy’s basin hopping optimizer, try inserting the following lines
before initializing training:

from amp.regression import Regressor
from scipy.optimize import basinhopping

regressor = Regressor(optimizer=basinhopping, lossprime=False)
calc.model.regressor = regressor

Note that not all optimizers take as argument the gradient of the objective function being optimized and lossprime has
to be set to False accordingly as shown above.

3.3 Turning on/off force training

Most electronic structure codes also give forces (in addition to potential energy) for each image, and you can get a
much more predictive fit if you include this information while training. However, this can create issues: training will
tend to be slower than training energies only, convergence will be more difficult, and if there are inconsistencies in the
training data (say if the calculator reports 0K-extrapolated energies rather than force-consistent ones, or if there are
egg-box errors), you might not be able to train at all. For this reason, Amp defaults to energy-only training, but you
can turn on force-training via the convergence dictionary as noted above. Note that there is a force_coefficient keyword
also fed to the LossFunction class which can control the relative weighting of the energy and force RMSEs used
in the path to convergence.

from amp.model import LossFunction

convergence = {'energy_rmse': 0.02, 'force_rmse': 0.04}
calc.model.lossfunction = LossFunction(convergence=convergence,

force_coefficient=0.04)

3.4 Parallel processing

Most tasks in Amp are “embarrassingly parallel” and thus you should see a performance boost by specifying more
cores. Our standard parallel processing approach requires the modules ZMQ (to pass messages between processes)
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and pxssh (to establish SSH connections across nodes, and is only needed if parallelizing on more than one node).

The code will try to automatically guess the parallel configuration from the environment variables that your batching
system produces, using the function amp.utilities.assign_cores(). (We only use SLURM on our system,
so we welcome patches to get this utility working on other systems!) If you want to override the automatic guess, use
the cores keyword when initializing Amp. To specify serial operation, use cores=1; to specify (for example) 8 cores
on only a single node, use cores=8 or cores={‘localhost’: 8}. For parallel operation, cores should be a dictionary
where the keys are the hostnames and the values are the number of processors (cores) available on that node; e.g.,

cores = {'node241': 16,
'node242': 16}

(One of the keys in the dictionary could also be localhost, as in the single-node example. Using localhost just prevents
it from establishing an extra SSH connection.)

For this to work on multiple nodes, you need to be able to freely SSH between nodes on your system. Typically, this
means that once you are logged in to your cluster you have public/private keys in use to ssh between nodes. If you can
run ssh localhost without it asking you for a password, this is likely to work for you.

This also assumes that your environment is identical each time you SSH into a node; that is, all the packages such as
ASE, Amp, ZMQ, etc., are available in the same version. Generally, if you are setting your environment with a .bashrc
or .modules file this will just work. However, if you need to set your environment variables on the machine that is
being ssh’d to, you can do so with the envcommand keyword, which you might set to

envcommand = 'export PYTHONPATH=/path/to/amp:$PYTHONPATH'

This envcommand can be passed as a keyword to the initialization of the Amp class. Ultimately, Amp stores these and
passes them around in a configuration dictionary called parallel, so if you are calling descriptor or model functions
directly you may need to construct this dictionary, which has the form parallel={‘cores’: . . . , ‘envcommand’: . . . }.

3.5 Advanced use

Under the hood, the train function is pretty simple; it just runs:

images = hash_images(images, ...)
self.descriptor.calculate_fingerprints(images, ...)
result = self.model.fit(images, self.descriptor, ...)
if result is True:

self.save(filename)

• In the first line, the images are read and converted to a dictionary, addressed by a hash. This makes addressing
the images simpler across modules and eliminates duplicate images. This also facilitates keeping a database of
fingerprints, such that in future scripts you do not need to re-fingerprint images you have already encountered.

• In the second line, the descriptor converts the images into fingerprints, one fingerprint per image. There are
two possible modes a descriptor can operate in: “image-centered” in which one vector is produced per image,
and “atom-centered” in which one vector is produced per atom. That is, in atom-centered mode the image’s
fingerprint will be a list of lists. The resulting fingerprint is stored in self.descriptor.fingerprints, and the mode
is stored in self.parameters.mode.

• In the third line, the model (e.g., a neural network) is fit to the data. As it is passed a reference to self.descriptor,
it has access to the fingerprints as well as the mode. Many options are available to customize this in terms of the
loss function, the regression method, etc.

• In the final pair of lines, if the target fit was achieved, the model is saved to disk.

3.5. Advanced use 11
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3.6 Re-training and resuming training

If training is successful, Amp saves the parameters into an ‘<label>.amp’ file (by default the label is ‘amp’, so this
file is ‘amp.amp’). You can load the pretrained calculator and re-train it further with tighter convergence criteria or
more/different images. You can specify if the pre-trained amp.amp will be overwritten by the re-trained one through
the key word ‘overwrite’ (default is False).

calc = Amp.load('amp.amp')
calc.model.lossfunction = LossFunction(convergence=convergence)
calc.train(overwrite=True, images='training.traj')

If training does not succeed, Amp raises a TrainingConvergenceError. You can use this within your scripts
to catch when training succeeds or fails, for example:

from amp.utilities import TrainingConvergenceError

...

try:
calc.train(images)

except TrainingConvergenceError:
# Whatever you want to happen if training fails;
# e.g., refresh parameters and train again.

The neural network calculator saves checkpoints, and you can use these to resume a training run or to monitor the
performance on a validation set. Use the checkpoints keyword to control this behavior. If your script times out before
training finishes, you can generally just re-submit the same script; if the code finds a checkpoint file it will load the
parameters from the checkpoint file and resume training from that point. This will be noted in the log file.

3.7 Global search in the parameter space

If the model is trained with minimizing a loss function which has a non-convex form, it might be desirable to perform
a global search in the parameter space in prior to a gradient-descent optimization algorithm. That is, in the first step we
do a random search in an area of parameter space including multiple basins (each basin has a local minimum). Next
we take the parameters corresponding to the minimum loss function found, and start a gradient-descent optimization
to find the local minimum of the basin found in the first step. Currently there exists a built-in global-search optimizer
inside Amp which uses simulated-annealing algorithm. The module is based on the open-source simulated-annealing
code of Wagner and Perry [1], but has been brought into the context of Amp. To use this module, the calculator object
should be initiated as usual:

from amp import Amp
calc = Amp(descriptor=..., model=...)
images = ...

Then the calculator object and the images are passed to the Annealer module and the simulated-annealing search
is performed by reducing the temperature from the initial maximum value Tmax to the final minimum value Tmin in
number of steps steps:

from amp.utilities import Annealer
Annealer(calc=calc, images=images, Tmax=20, Tmin=1, steps=4000)

If Tmax takes a small value (greater than zero), then the algorithm reduces to the simple random-walk search. Finally
the usual train() method is called to continue from the best parameters found in the last step:

12 Chapter 3. Using Amp
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calc.train(images=images,)

References:

1. https://github.com/perrygeo/simanneal.

3.7. Global search in the parameter space 13
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CHAPTER 4

Community

4.1 Mailing list

An amp-users listserv is available for general discussion, troubleshooting, suggestions, etc. It is available at

https://listserv.brown.edu/?A0=AMP-USERS

The archives of this list are also available to members of the list. A direct link to subscribe to the list is at

https://listserv.brown.edu/?SUBED1=AMP-USERS&A=1

4.2 Bugs and issues

To report bugs, issues, works-in-progress, or feature requests (although those might best be first discussed on amp-
users), please use our Issue Tracker on the repository page. It is available at

https://bitbucket.org/andrewpeterson/amp/issues

4.3 Contributions

You are welcome to contribute to this project. See the Development page.
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CHAPTER 5

Theory

According to the Born-Oppenheimer approximation, the ground-state potential energy of an atomic configuration is
dictated solely by the nuclear coordinates (under certain conditions, such as the absence of external fields and constant
charge). The potential energy is in general a very complicated function of the nuclear coordinates; it in theory can
be calculated by directly solving the Schrodinger equation. However, in practice, an exact analytical solution to the
many-body Schrodinger equation is very difficult (if not impossible), and most electronic structure codes provide a
point-by-point approximation to the ground-state potential energy for given nuclear configurations.

Given enough example calculations from any electronic structure calculator, the idea is then to approximate the poten-
tial energy with a regression model:

R regression−−−−−→ 𝐸 = 𝐸(R),

where R is the position of atoms in the system.

5.1 Atomic representation of potential energy

In order to have a potential function which is simultaneously applicable to systems of different sizes, the total potential
energy of the system can to be broken up into atomic energy contributions:

𝐸(R) =

𝑁∑︁
atom=1

𝐸atom(R).

The above expansion can be justified by assembling the atomic configuration by bringing atoms close to each other one
by one. Then the atomic energy contributions (instead of the energy of the whole system at once) can be approximated
using a regression method:

R regression−−−−−→ 𝐸atom = 𝐸atom (R) .

17
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5.2 Descriptor

A better interpolation can be achieved if an appropriate symmetry function G of atomic coordinates, approximating
the functional dependence of local energetics, is used as the input of the regression operator:

R G−→ G (R)
regression−−−−−→ 𝐸atom = 𝐸atom (G (R)) .

In net, this results in a scheme like shown below. The symmetry functions create “feature vectors” which in turn are
fed into a machine-learning regression model.

5.2.1 Gaussian

A Gaussian descriptor G as a function of pair-atom distances and three-atom angles has been suggested by Behler [1],
and is implemented within Amp. Radial fingerprints of the Gaussian type capture the interaction of atom 𝑖 with all
atoms 𝑗 as the sum of Gaussians with width 𝜂 and center (offset) 𝑅𝑠,

𝐺II
𝑖 =

atoms j within 𝑅𝑐
distance of atom i∑︁

𝑗 ̸=𝑖

𝑒−𝜂(𝑅𝑖𝑗−𝑅𝑠)
2/𝑅2

𝑐𝑓𝑐 (𝑅𝑖𝑗).

By specifying many values of 𝜂 and 𝑅𝑠 we can begin to build a feature vector for regression.

The next type is the angular fingerprint accounting for three-atom interactions. The Gaussian angular finger-
prints are computed for all triplets of atoms 𝑖, 𝑗, and 𝑘 by summing over the cosine values of the angles 𝜃𝑖𝑗𝑘 =

cos−1

(︂
R𝑖𝑗 .R𝑖𝑘

𝑅𝑖𝑗𝑅𝑖𝑘

)︂
, (R𝑖𝑗 = R𝑖 − R𝑗), centered at atom 𝑖, according to

𝐺IV
𝑖 = 21−𝜁

atoms j, k within 𝑅𝑐
distance of atom i∑︁
𝑗, 𝑘 ̸= 𝑖
(𝑗 ̸= 𝑘)

(1 + 𝜆 cos 𝜃𝑖𝑗𝑘)
𝜁
𝑒−𝜂(𝑅2

𝑖𝑗+𝑅2
𝑖𝑘+𝑅2

𝑗𝑘)/𝑅
2
𝑐𝑓𝑐 (𝑅𝑖𝑗) 𝑓𝑐 (𝑅𝑖𝑘) 𝑓𝑐 (𝑅𝑗𝑘),

with parameters 𝜆, 𝜂, and 𝜁, which again can be chosen to build more elements of a feature vector.

There is an alternative angular symmetry function that ignores the separation between atoms 𝑗 and 𝑘; this can be better
behaved than the previous function.

𝐺V
𝑖 = 21−𝜁

atoms j, k within 𝑅𝑐
distance of atom i∑︁
𝑗, 𝑘 ̸= 𝑖
(𝑗 ̸= 𝑘)

(1 + 𝜆 cos 𝜃𝑖𝑗𝑘)
𝜁
𝑒−𝜂(𝑅2

𝑖𝑗+𝑅2
𝑖𝑘)/𝑅

2
𝑐𝑓𝑐 (𝑅𝑖𝑗) 𝑓𝑐 (𝑅𝑖𝑘),

The cutoff function 𝑓𝑐 (𝑅𝑖𝑗) in the above equations defines the energetically relevant local environment with value one
at 𝑅𝑖𝑗 = 0 and zero at 𝑅𝑖𝑗 = 𝑅𝑐, where 𝑅𝑐 is the cutoff radius. In order to have a continuous force-field, the cutoff
function 𝑓𝑐 (𝑅𝑖𝑗) as well as its first derivative should be continuous in 𝑅𝑖𝑗 ∈ [0,∞). One possible expression for such
a function as proposed by Behler [1] is

𝑓𝑐 (𝑟) ==

⎧⎨⎩ 0.5

(︂
1 + cos

(︂
𝜋

𝑟

𝑅𝑐

)︂)︂
for 𝑟 ≤ 𝑅𝑐,

0 for 𝑟 > 𝑅𝑐.

Another more general choice for the cutoff function is the following polynomial [5]:

𝑓𝑐 (𝑟) =

{︃
1 + 𝛾 · (𝑟/𝑅𝑐)

𝛾+1 − (𝛾 + 1) (𝑟/𝑅𝑐)
𝛾 if 𝑟 ≤ 𝑅𝑐,

0 if 𝑟 > 𝑅𝑐,
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with a user-specified parameter 𝛾 that determines the rate of decay of the cutoff function as it extends from 𝑟 = 0 to
𝑟 = 𝑅𝑐.

The figure below shows how components of the fingerprints GII and GIV change with, respectively, distance 𝑅𝑖𝑗

between the pair of atoms 𝑖 and 𝑗 and the valence angle 𝜃𝑖𝑗𝑘 between the triplet of atoms 𝑖, 𝑗, and 𝑘 with central atom
𝑖:

5.2.2 Zernike

A three-dimensional Zernike descriptor is also available inside Amp, and can be used as the atomic environment
descriptor. The Zernike-type descriptor has been previously used in the machine-learning community extensively, but
it has been suggested here for the first time for representing the local chemical environment. Zernike moments are
basically a tensor product between spherical harmonics (complete and orthogonal on the surface of the unit sphere),
and Zernike polynomials (complete and orthogonal within the unit sphere). Zernike descriptor components for each
integer degree are then defined as the norm of Zernike moments with the same corresponding degree. For more details
on the Zernike descriptor the reader is referred to the nice paper of Novotni and Klein [2].

Inspired by Bartok et. al. [3], to represent the local chemical environment of atom 𝑖, an atomic density function 𝜌𝑖(r)
is defined for each atomic local environment as the sum of delta distributions shifted to atomic positions:

𝜌𝑖(r) =

atoms j within 𝑅𝑐
distance of atom i∑︁

𝑗 ̸=𝑖

𝜂𝑗𝛿 (r−R𝑖𝑗) 𝑓𝑐 (‖R𝑖𝑗‖) ,

Next, components of the Zernike descriptor are computed from Zernike moments of the above atomic density destri-
bution for each atom 𝑖.

The figure below shows how components of the Zernike descriptor vary with pair-atom distance, three-atom angle,
and four-atom dehidral angle. It is important to note that components of the Gaussian descriptor discussed above are
non-sensitive to the four-atom dehidral angle of the following figure.

5.2.3 Bispectrum

Bispectrum of four-dimensional spherical harmonics have been suggested by Bartok et al. [3] to be invariant under
rotation of the local atomic environment. In this approach, the atomic density distribution defined above is first mapped
onto the surface of unit sphere in four dimensions. Consequently, Bartok et al. have shown that the bispectrum of this
mapping can be used as atomic environment descriptor. We refer the reader to the original paper [3] for mathematical
details. This approach of describing local environment is also available inside Amp.

5.3 Regression Model

The general purpose of the regression model 𝑥
regression−−−−−→ 𝑦 with input 𝑥 and output 𝑦 is to approximate the function

𝑦 = 𝑓(𝑥) by using sample training data points (𝑥𝑖, 𝑦𝑖). The intent is to later use the approximated 𝑓 for input data
𝑥𝑗 (other than 𝑥𝑖 in the training data set), and make predictions for 𝑦𝑗 . Typical regression models include Gaussian
processes, support vector regression, and neural network.
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5.3.1 Neural network model

A neural network model is basically a very simple model of how the nervous system processes information. The
first mathematical model was developed in 1943 by McCulloch and Pitts [4] for classification purposes; biological
neurons either send or do not send a signal to the neighboring neuron. The model was soon extended to do linear and
nonlinear regression, by replacing the binary activation function with a continuous function. The basic functional unit
of a neural network is called “node”. A number of parallel nodes constitute a layer. A feed-forward neural network
consists of at least an input layer plus an output layer. When approximating the PES, the output layer has just one
neuron representing the potential energy. For a more robust interpolation, a number of “hidden layers” may exist
in the neural network as well; the word “hidden” refers to the fact that these layers have no physical meaning. A
schematic of a typical feed-forward neural network is shown below. In each node a number of inputs is multiplied by
the corresponding weights and summed up with a constant bias. An activation function then acts upon the summation
and an output is generated. The output is finally sent to the neighboring neuron in the next layer. Typically used
activation functions are hyperbolic tangent, sigmoid, Gaussian, and linear functions. The unbounded linear activation
function is particularly useful in the last hidden layer to scale neural network outputs to the range of reference values.
For our purpose, the output of neural network represents energy of atomic system.

References:

1. “Atom-centered symmetry functions for constructing high-dimensional neural network potentials”, J. Behler, J.
Chem. Phys. 134(7), 074106 (2011)

2. “Shape retrieval using 3D Zernike descriptors”, M. Novotni and R. Klein, Computer-Aided Design 36(11),
1047–1062 (2004)

3. “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons”, A.P. Bart’ok,
M.C. Payne, R. Kondor and G. Csanyi, Physical Review Letters 104, 136403 (2010)

4. “A logical calculus of the ideas immanent in nervous activity”, W.S. McCulloch, and W.H. Pitts, Bull. Math.
Biophys. 5, 115–133 (1943)

5. “Amp: A modular approach to machine learning in atomistic simulations”, A. Khorshidi, and A.A. Peterson,
Comput. Phys. Commun. 207, 310–324 (2016)
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CHAPTER 6

Credits

6.1 People

This project is developed primarily by Andrew Peterson and Alireza Khorshidi in the Brown University School of
Engineering. Specific credits:

• Andrew Peterson: lead, PI, many modules

• Alireza Khorshidi: many modules, Zernike descriptor

• Zack Ulissi: tensorflow version of neural network

• Muammar El Khatib: general contributions

We are also indebted to Nongnuch Artrith (MIT) and Pedro Felzenszwalb (Brown) for inspiration and technical dis-
cussion.

6.2 Citations

We would appreciate if you cite the below publication for any use of Amp or its methods:

Khorshidi & Peterson, “Amp: A modular approach to machine learning in atomistic simulations”, Com-
puter Physics Communications 207:310-324, 2016.

If you use Amp for saddle-point searches or nudged elastic bands, please also cite:

Peterson, “Acceleration of saddle-point searches with machine learning”, Journal of Chemical Physics,
145:074106, 2016.

If you use Amp for uncertainty or with the bootstrap module, please also cite:

Peterson, Christensen, Khorshidi, “Addressing uncertainty in atomistic machine learning”, Physical
Chemistry Chemical Physics, 19:10978, 2017.

If you use the initialization, feature and image selection, or nearsighted force training modules, we would appreaciate
it if you can also cite:
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Zeng, Chen and Peterson, “A nearsighted force-training approach to systematically generate training data
for the machine learning of large atomic structures “. JCP 156, 064104 (2022).
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CHAPTER 7

Release notes

7.1 1.0.1

Release date: January 25, 2023

• Fixed setup.py and pip installation to properly bring in new modules.

Permanently available at https://doi.org/10.5281/zenodo.7568980

7.2 1.0

Release date: August 31, 2022

• Added the Nearsighted Force Training approach.

• Added image and feature selection methods.

• Added offsets in G2 fingerprints; that is, G2 symmetry functions with shifted Gaussian centers can be used.

• Fast force calls are now supported, via third-party codes. See the fast force calls portion of the documentation.

• A documented bootstrap module, complete with examples of use, is included for uncertainty predictions.

• Improved interprocess communication which should reduce network traffic for parallel jobs.

• Amp is now part of the Debian archives! This means it should soon be available in package managers for linux
releases such as Ubuntu.

• The convergence plots (via amp.analysis and amp-plotconvergence) now handle multiple training attempts
from a single log file.

• The image hashing routine, used to uniquely identify images, has been updated to correctly handle permutations
in very large atomic systems. (Note this means that images hashed with a prior version of Amp will have a
different unique identifier, so you should not mix databases of fingerprints.)

• Added Kernel Ridge Regression to Amp.
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• Incorporation of Behler’s G5 angular symmetry function.

• Neural network training scripts are now re-submittable; that is, if a job times out it can be re-submitted (unmod-
ified) and will pick up from the last checkpoint.

Permanently available at https://doi.org/10.5281/zenodo.7035955

7.3 0.6.1

Release date: July 19, 2018

• Installation via pip is now possible.

7.4 0.6

Release date: July 31, 2017

• Python 3 compatibility. Following the release of python3-compatible ASE, we decided to jump on the wagon
ourselves. The code should still work fine in python 2.7. (The exception is the tensorflow module, which still
only lives inside python 2, unfortunately.)

• A community page has been added with resources such as the new mailing list and issue tracker.

• The default convergence parameters have been changed to energy-only training; force-training can be added by
the user via the loss function. This makes convergence easier for new users.

• Convergence plots show maximum residuals as well as root mean-squared error.

• Parameters to make the Gaussian feature vectors are now output to the log file.

• The helper function make_symmetry_functions() has been added to more easily customize Gaussian
fingerprint parameters.

Permanently available at https://doi.org/10.5281/zenodo.836788

7.5 0.5

Release date: February 24, 2017

The code has been significantly restructured since the previous version, in order to increase the modularity; much of
the code structure has been changed since v0.4. Specific changes below:

• A parallelization scheme allowing for fast message passing with ZeroMQ.

• A simpler database format based on files, which optionally can be compressed to save diskspace.

• Incorporation of an experimental neural network model based on google’s TensorFlow package. Requires Ten-
sorFlow version 0.11.0.

• Incorporation of an experimental bootstrap module for uncertainty analysis.

Permanently available at https://doi.org/10.5281/zenodo.322427
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7.6 0.4

Release date: February 29, 2016

Corresponds to the publication of Khorshidi, A; Peterson*, AA. Amp: a modular approach to machine learning in
atomistic simulations. Computer Physics Communications 207:310-324, 2016. http://dx.doi.org/10.1016/j.cpc.2016.
05.010

Permanently available at https://doi.org/10.5281/zenodo.46737

7.7 0.3

Release date: July 13, 2015

First release under the new name “Amp” (Atomistic Machine-Learning Package/Potentials).

Permanently available at https://doi.org/10.5281/zenodo.20636

7.8 0.2

Release date: July 13, 2015

Last version under the name “Neural: Machine-learning for Atomistics”. Future versions are named “Amp”.

Available as the v0.2 tag in https://bitbucket.org/andrewpeterson/neural/commits/tag/v0.2

7.9 0.1

Release date: November 12, 2014

(Package name: Neural: Machine-Learning for Atomistics)

Permanently available at https://doi.org/10.5281/zenodo.12665.

7.10 Alpha version milestones

First public code (bitbucket): September 1, 2014.

First project commit: May 5, 2014.
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CHAPTER 8

Example scripts

8.1 A basic fitting script

The below script uses Gaussian descriptors with a neural network backend — the Behler-Parrinello approach — to
train energies only to a training set made by the script. Note that most of the code is just generating the training data,
and the training takes place in a couple of lines.

"""Simple test of the Amp calculator, using Gaussian descriptors and neural
network model. Randomly generates data with the EMT potential in MD
simulations."""

import os
from ase import Atoms, Atom, units
import ase.io
from ase.calculators.emt import EMT
from ase.build import fcc110
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase.md import VelocityVerlet
from ase.constraints import FixAtoms

from amp import Amp
from amp.descriptor.gaussian import Gaussian
from amp.model.neuralnetwork import NeuralNetwork

def generate_data(count, filename='training.traj'):
"""Generates test or training data with a simple MD simulation."""
if os.path.exists(filename):

return
traj = ase.io.Trajectory(filename, 'w')
atoms = fcc110('Pt', (2, 2, 2), vacuum=7.)
atoms.extend(Atoms([Atom('Cu', atoms[7].position + (0., 0., 2.5)),

Atom('Cu', atoms[7].position + (0., 0., 5.))]))
atoms.set_constraint(FixAtoms(indices=[0, 2]))

(continues on next page)
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(continued from previous page)

atoms.calc = EMT()
atoms.get_potential_energy()
traj.write(atoms)
MaxwellBoltzmannDistribution(atoms, 300. * units.kB)
dyn = VelocityVerlet(atoms, dt=1. * units.fs)
for step in range(count - 1):

dyn.run(50)
traj.write(atoms)

generate_data(20)

calc = Amp(descriptor=Gaussian(),
model=NeuralNetwork(hiddenlayers=(10, 10, 10)))

calc.train(images='training.traj')

Note you can monitor the progress of the training by typing amp-plotconvergence amp-log.txt, which will create a file
called convergence.pdf.

8.2 A basic script with forces

The below script trains both energy and forces to the same training set as above. Note this may take some time to run,
which will depend upon the initial guess for the neural network parameters that is randomly generated. Try decreasing
the force_rmse convergence parameter if you would like faster results.

"""Simple test of the Amp calculator, using Gaussian descriptors and neural
network model. Randomly generates data with the EMT potential in MD
simulations."""

import os
from ase import Atoms, Atom, units
import ase.io
from ase.calculators.emt import EMT
from ase.build import fcc110
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase.md import VelocityVerlet
from ase.constraints import FixAtoms

from amp import Amp
from amp.descriptor.gaussian import Gaussian
from amp.model.neuralnetwork import NeuralNetwork
from amp.model import LossFunction

def generate_data(count, filename='training.traj'):
"""Generates test or training data with a simple MD simulation."""
if os.path.exists(filename):

return
traj = ase.io.Trajectory(filename, 'w')
atoms = fcc110('Pt', (2, 2, 2), vacuum=7.)
atoms.extend(Atoms([Atom('Cu', atoms[7].position + (0., 0., 2.5)),

Atom('Cu', atoms[7].position + (0., 0., 5.))]))
atoms.set_constraint(FixAtoms(indices=[0, 2]))
atoms.calc = EMT()

(continues on next page)
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(continued from previous page)

atoms.get_potential_energy()
traj.write(atoms)
MaxwellBoltzmannDistribution(atoms, 300. * units.kB)
dyn = VelocityVerlet(atoms, dt=1. * units.fs)
for step in range(count - 1):

dyn.run(50)
traj.write(atoms)

generate_data(20)

calc = Amp(descriptor=Gaussian(),
model=NeuralNetwork(hiddenlayers=(10, 10, 10)))

calc.model.lossfunction = LossFunction(convergence={'energy_rmse': 0.02,
'force_rmse': 0.02})

calc.train(images='training.traj')

Note you can monitor the progress of the training by typing amp-plotconvergence amp-log.txt, which will create a file
called convergence.pdf.

8.3 Examining fingerprints

With the modular nature, it’s straightforward to analyze how fingerprints change with changes in images. The below
script makes an animated GIF that shows how a fingerprint about the O atom in water changes as one of the O-H bonds
is stretched. Note that most of the lines of code below are either making the atoms or making the figure; very little
effort is needed to produce the fingerprints themselves—this is done in three lines.

# Make a series of images.
import numpy as np
from ase.structure import molecule
from ase import Atoms
atoms = molecule('H2O')
atoms.rotate('y', -np.pi/2.)
atoms.set_pbc(False)
displacements = np.linspace(0.9, 8.0, 20)
vec = atoms[2].position - atoms[0].position
images = []
for displacement in displacements:

atoms = Atoms(atoms)
atoms[2].position = (atoms[0].position + vec * displacement)
images.append(atoms)

# Fingerprint using Amp.
from amp.descriptor.gaussian import Gaussian
descriptor = Gaussian()
from amp.utilities import hash_images
images = hash_images(images, ordered=True)
descriptor.calculate_fingerprints(images)

# Plot the data.
from matplotlib import pyplot

def barplot(hash, name, title):
"""Makes a barplot of the fingerprint about the O atom."""

(continues on next page)
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(continued from previous page)

fp = descriptor.fingerprints[hash][0]
fig, ax = pyplot.subplots()
ax.bar(range(len(fp[1])), fp[1])
ax.set_title(title)
ax.set_ylim(0., 2.)
ax.set_xlabel('fingerprint')
ax.set_ylabel('value')
fig.savefig(name)

for index, hash in enumerate(images.keys()):
barplot(hash, 'bplot-%02i.png' % index,

'%.2f$\\times$ equilibrium O-H bondlength'
% displacements[index])

# For fun, make an animated gif.
import os
filenames = ['bplot-%02i.png' % index for index in range(len(images))]
command = ('convert -delay 100 %s -loop 0 animation.gif' %

' '.join(filenames))
os.system(command)
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CHAPTER 9

Analysis

9.1 Convergence plots

You can use the tool called amp-plotconvergence to help you examine the output of an Amp log file. Run amp-
plotconvergence -h for help at the command line.

You can also access this tool as plot_convergence() from the amp.analysis module.

9.2 Other plots

There are several other plotting tools within the amp.analysis module, including
plot_parity_and_error() for making parity and error plots, and plot_sensitivity() for exam-
ining the sensitivity of the model output to the model parameters. These modules should produce plots like below; in
the order parity, error, and sensitivity from left to right. See the module autodocumentation for details.
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CHAPTER 10

Building modules

Amp is designed to be modular, so if you think you have a great descriptor scheme or machine-learning model, you
can try it out. This page describes how to add your own modules; starting with the bare-bones requirements to make
it work, and building up with how to construct it so it integrates with respect to parallelization, etc.

10.1 Descriptor: minimal requirements

To build your own descriptor, it needs to have certain minimum requirements met, in order to play with Amp. The
below code illustrates these minimum requirements:

from ase.calculators.calculator import Parameters

class MyDescriptor(object):

def __init__(self, parameter1, parameter2):
self.parameters = Parameters({'mode': 'atom-centered',})
self.parameters.parameter1 = parameter1
self.parameters.parameter2 = parameter2

def tostring(self):
return self.parameters.tostring()

def calculate_fingerprints(self, images, cores, log):
# Do the calculations...
self.fingerprints = fingerprints # A dictionary.

The specific requirements, illustrated above, are:

• Has a parameters attribute (of type ase.calculators.calculator.Parameters), which holds the minimum informa-
tion needed to re-build your module. That is, if your descriptor has user-settable parameters such as a cutoff
radius, etc., they should be stored in this dictionary. Additionally, it must have the keyword “mode”; which must
be set to either “atom-centered” or “image-centered”. (This keyword will be used by the model class.)

33



Amp Documentation, Release 1.0.1

• Has a “tostring” method, which converts the minimum parameters into a dictionary that can be re-constructed
using eval. If you used the ASE Parameters class above, this class is simple:

def tostring():
return self.parameters.tostring()

• Has a “calculate_fingerprints” method. The images argument is a dictionary of training images, with keys that
are unique hashes of each image in the set produced with amp.utilities.hash_images(). The log is
a amp.utilities.Logger instance, that the method can optionally use as log(‘Message.’). The cores key-
word describes parallelization, and can safely be ignored if serial operation is desired. This method must save a
sub-attribute self.fingerprints (which will be accessible in the main Amp instance as calc.descriptor.fingerprints)
that contains a dictionary-like object of the fingerprints, indexed by the same keys that were in the images dic-
tionary. Ideally, descriptor.fingerprints is an instance of amp.utilities.Data, but probably any mapping
(dictionary-like) object will do.

A fingerprint is a vector. In image-centered mode, there is one fingerprint for each image. This will generally
be just the Cartesian positions of all the atoms in the system, but transformations are possible. For example this
could be accessed by the images key

>>> calc.descriptor.fingerprints[key]
>>> [3.223, 8.234, 0.0322, 8.33]

In atom-centered mode, there is a fingerprint for each atom in the image. Therefore, calling
calc.descriptor.fingerprints[key] returns a list of fingerprints, in the same order as the atom ordering in the
original ASE atoms object. So to access an individual atom’s fingerprints one could do

>>> calc.descriptor.fingerprints[key][index]
>>> ('Cu', [8.832, 9.22, 7.118, 0.312])

That is, the first item is the element of the atom, and the second is a 1-dimensional array which is that atom’s fingerprint.
Thus, calc.descriptor.fingerprints[hash] gives a list of fingerprints, in the same order the atoms appear in
the image they were fingerprinted from.

If you want to train your model to forces also (besides energies), your “calculate_fingerprints” method needs
to calculate derivatives of the fingerprints with respect to coordinates as well. This is because forces (as the
minus of coordinate-gradient of the potential energy) can be written, according to the chain rule of calculus,
as the derivative of your model output (which represents energy here) with respect to model inputs (which
is fingerprints) times the derivative of fingerprints with respect to spatial coordinates. These derivatives are
calculated for each image for each possible pair of atoms (within the cutoff distance in the atom-centered
mode). They can be calculated either analytically or simply numerically with finite-difference method. If
a piece of code is written to calculate coordinate-derivatives of fingerprints, then the “calculate_fingerprints”
method can save it as a sub-attribute self.fingerprintprimes (which will be accessible in the main Amp instance as
calc.descriptor.fingerprintprimes) along with self.fingerprints. self.fingerprintprimes is a dictionary-like object,
indexed by the same keys that were in the images dictionary. Ideally, descriptor.fingerprintprimes is an instance
of amp.utilities.Data, but probably any mapping (dictionary-like) object will do.

Calling calc.descriptor.fingerprintprimes[key] returns the derivatives of fingerprints for the image key of interest.
This is a dictionary where each key is a tuple representing the indices of the derivative, and each value is a list
of finperprintprimes. (This list has the same length as the fingerprints.) For example, to retrieve derivatives of
the fingerprints of atom indexed 2 (which is say Pt) with respect to 𝑥 coordinate of atom indexed 1 (which is say
Cu), we should do

>>> calc.descriptor.fingerprintprimes[key][(1, 'Cu', 2, 'Pt', 0)]
>>> [-1.202, 0.130, 4.511, -0.721]

Or to retrieve derivatives of the fingerprints of atom indexed 1 with respect to 𝑧 coordinate of atom indexed 1,
we do
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>>> calc.descriptor.fingerprintprimes[key][(1, 'Cu', 1, 'Cu', 2)]
>>> [3.48, -1.343, -2.561, -8.412]

10.2 Descriptor: standard practices

The below describes standard practices we use in building modules. It is not necessary to use these, but it should make
your life easier to follow standard practices. And, if your code is ultimately destined to be part of an Amp release, you
should plan to make it follow these practices unless there is a compelling reason not to.

We have an example of a minimal descriptor in amp.descriptor.example; it’s probably easiest to copy this
file and modify it to become your new descriptor. For a complete example of a working descriptor, see amp.
descriptor.gaussian.

10.2.1 The Data class

The key element we use to make our lives easier is the Data class. It should be noted that, in the development version,
this is still a work in progress. The Data class acts like a dictionary in that items can be accessed by key, but also
saves the data to disk (it is persistent), enables calculation of missing items, and can even parallelize these calculations
across cores and nodes.

It is recommended to first construct a pure python version that fits with the Data scheme for 1 core, then expand-
ing it to work with multiple cores via the following procedure. See the Gaussian descriptor for an example of
implementation.

Basic data addition

To make the descriptor work with the Data class, the Data class needs a keyword calculator. The simplest example
of this is our NeighborlistCalculator, which is basically a wrapper around ASE’s Neighborlist class:

class NeighborlistCalculator:
"""For integration with .utilities.Data
For each image fed to calculate, a list of neighbors with offset
distances is returned.
"""

def __init__(self, cutoff):
self.globals = Parameters({'cutoff': cutoff})
self.keyed = Parameters()
self.parallel_command = 'calculate_neighborlists'

def calculate(self, image, key):
cutoff = self.globals.cutoff
n = NeighborList(cutoffs=[cutoff / 2.] * len(image),

self_interaction=False,
bothways=True,
skin=0.)

n.update(image)
return [n.get_neighbors(index) for index in range(len(image))]

Notice there are two categories of parameters saved in the init statement: globals and keyed. The first are parameters
that apply to every image; here the cutoff radius is the same regardless of the image. The second category contains
data that is specific to each image, in a dictionary format keyed by the image hash. In this example, there are no
keyed parameters, but in the case of the fingerprint calculator, the dictionary of neighborlists is an example of a keyed
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parameter. The class must have a function called calculate, which when fed an image and its key, returns the desired
value: in this case a neighborlist. Structuring your code as above is enough to make it play well with the Data container
in serial mode. (Actually, you don’t even need to worry about dividing the parameters into globals and keyed in serial
mode.) Finally, there is a parallel_command attribute which can be any string which describes what this function does,
which will be used later.

Parallelization

The parallelization should work provided the scheme is embarassingly parallel; that is, each image’s fingerprint is
independent of all other images’ fingerprints. We implement this in building the Data dictionaries, using a scheme of
establishing SSH sessions (with pxssh) for each worker and passing messages with ZMQ.

The Data class itself serves as the master, and the workers are instances of the specific module; that is, for the
Gaussian scheme the workers are started with python -m amp.descriptor.gaussian id hostname:port where id is a
unique identifier number assigned to each worker, and hostname:port is the socket at which the workers should open
the connection to the mater (e.g., “node243:51247”). The master expects the worker to print two messages to the
screen: “<amp-connect>” which confirms the connection is established, and “<stderr>”; the text that is between them
alerts the master (and the user’s log file) where the worker will write its standard error to. All messages after this are
passed via ZMQ. I.e., the bottom of the module should contain something like:

if __name__ == "__main__":
import sys
import tempfile

hostsocket = sys.argv[-1]
proc_id = sys.argv[-2]

print('<amp-connect>')
sys.stderr = tempfile.NamedTemporaryFile(mode='w', delete=False,

suffix='.stderr')
print('stderr written to %s<stderr>' % sys.stderr.name)

After this, the worker communicates with the master in request (from the worker) / reply (from the master) mode, via
ZMQ. (It’s worth checking out the ZMQ Guide; (ZMQ Guide examples). Each request from the worker needs to take
the form of a dictionary with three entries: “id”, “subject”, and (optionally) “data”. These are easily created with the
MessageDictionary class. The first thing the worker needs to do is establish the connection to the master and
ask its purpose:

import zmq
from ..utilities import MessageDictionary
msg = MessageDictionary(proc_id)

# Establish client session via zmq; find purpose.
context = zmq.Context()
socket = context.socket(zmq.REQ)
socket.connect('tcp://%s' % hostsocket)
socket.send_pyobj(msg('<purpose>'))
purpose = socket.recv_pyobj()

In the final line above, the master has sent a string with the parallel_command attribute mentioned above. You can
have some if/elif statements to choose what to do next, but for the calculate_neighborlist example, the worker routine
is as simple as requesting the variables, performing the calculations, and sending back the results, which happens in
these few lines. This is all that is needed for parallelization (in pure python):

# Request variables.
socket.send_pyobj(msg('<request>', 'cutoff'))

(continues on next page)
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cutoff = socket.recv_pyobj()
socket.send_pyobj(msg('<request>', 'images'))
images = socket.recv_pyobj()

# Perform the calculations.
calc = NeighborlistCalculator(cutoff=cutoff)
neighborlist = {}
while len(images) > 0:

key, image = images.popitem() # Reduce memory.
neighborlist[key] = calc.calculate(image, key)

# Send the results.
socket.send_pyobj(msg('<result>', neighborlist))
socket.recv_string() # Needed to complete REQ/REP.

Note that in python3, there is apparently an issue that garbage collection does not work correctly. Thus, we also need
to call socket.close() on each zmq.Context.socket object before it is destroyed, otherwise the program may hang when
trying to make new connections.
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CHAPTER 11

More on descriptors

11.1 Fingerprint ranges

It is often useful to examine your fingerprints more closely. There is a utility that can help with that, an example of
its use is below. This assumes you have open a calculator called “calc.amp” and you want to examine the fingerprint
ranges for your training data.

from ase import io
from amp.descriptor.analysis import FingerprintPlot
from amp import Amp

calc = Amp.load('calc.amp')
images = io.read('training.traj', index=':')

fpplot = FingerprintPlot(calc)
fpplot(images)

This will create a plot that looks something like below, here showing the fingerprint ranges for the specified element.

You can also overlay a specific image’s fingerprint on to the fingerprint plot by using the overlay keyword when calling
fpplot.
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CHAPTER 12

More on models

12.1 Visualizing neural network outputs

It can be useful to visualize the neural network model to see how it is behaving. For example, you may find nodes
that are effectively shut off (e.g., always giving a constant value like 1) or that are acting as a binary switch (e.g., only
returning 1 or -1). There is a tool to allow you to visualize the node outputs of a set of data.

from amp.model.neuralnetwork import NodePlot

nodeplot = NodePlot(calc)
nodeplot.plot(images, filename='nodeplottest.pdf')

This will create a plot that looks something like below. Note that one such series of plots is made for each element.
Here, Layer 0 is the input layer, from the fingerprints. Layer 1 and Layer 2 are the hidden layers. Layer 3 is the output
layer; that is, the contribution of Pt to the potential energy (before it is multiplied by and added to a parameter to bring
it to the correct magnitude).

12.2 Calling an observer during training

It can be useful to call a function known as an “observer” during the training of the model. In the neural network
implementation, this can be accomplished by attaching an observer directly to the model. The observer is executed at
each call to model.get_loss, and is fed the arguments (self, vector, loss). An example of using the observer to print out
one component of the parameter vector is shown below:

def observer(model, vector, loss):
"""Prints out the first component of the parameter vector."""
print(vector[0])

calc.model.observer = observer
calc.train(images)
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With this approach, all kinds of fancy tricks are possible, like calling another Amp model that reports the loss function
on a test set of images. This could be useful to implement training with early stopping, for example.
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CHAPTER 13

Gaussian descriptor

13.1 Custom parameters

The Gaussian descriptor creates feature vectors based on the Behler scheme, and defaults to a small set of reasonable
values. The values employed are always written to the log file and within saved instances of Amp calculators. You can
specify custom parameters for the elements of the feature vectors as listed in the documentation of the Gaussian
class.

There is also a helper function make_symmetry_functions() within the amp.descriptor.gaussian
module to assist with this. An example of making a custom fingerprint is given below for a two-element system.

import numpy as np
from amp import Amp
from amp.descriptor.gaussian import Gaussian, make_symmetry_functions
from amp.model.neuralnetwork import NeuralNetwork

elements = ['Cu', 'Pt']
G = make_symmetry_functions(elements=elements, type='G2',

etas=np.logspace(np.log10(0.05), np.log10(5.),
num=4),

offsets=[0., 2.])
G += make_symmetry_functions(elements=elements, type='G4',

etas=[0.005],
zetas=[1., 4.],
gammas=[+1., -1.])

G = {'Cu': G,
'Pt': G}

calc = Amp(descriptor=Gaussian(Gs=G),
model=NeuralNetwork())

To include angular symmetry functions of triplets inside the cutoff sphere but with distances larger than the cutoff
radius you need to slightly modify the snippet above:
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import numpy as np
from amp import Amp
from amp.descriptor.gaussian import Gaussian, make_symmetry_functions
from amp.model.neuralnetwork import NeuralNetwork

elements = ['Cu', 'Pt']
G = make_symmetry_functions(elements=elements, type='G2',

etas=np.logspace(np.log10(0.05), np.log10(5.),
num=4),

offsets=[0., 2.])
G += make_symmetry_functions(elements=elements, type='G5',

etas=[0.005],
zetas=[1., 4.],
gammas=[+1., -1.])

G = {'Cu': G,
'Pt': G}

calc = Amp(descriptor=Gaussian(Gs=G),
model=NeuralNetwork())
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CHAPTER 14

TensorFlow

Google has released an open-source version of its machine-learning software named Tensorflow, which can allow for
efficient backpropagation of neural networks and utilization of GPUs for extra speed.

We have incorporated an experimental module that uses a tensorflow back-end, which may provide an acceleration
particularly through access to GPU systems. As of this writing, the tensorflow code is in flux (with version 1.0
anticipated shortly).

14.1 Dependencies

This package requires google’s TensorFlow 0.11.0. You can install it as shown below for Linux:

export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.
→˓11.0-cp27-none-linux_x86_64.whl
pip install -U --upgrade $TF_BINARY_URL

or macOS:

export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-0.
→˓11.0-py2-none-any.whl
pip install -U --upgrade $TF_BINARY_URL

If you want more information, please see tensorflow’s website for instructions for installation on your system.

14.2 Example

#!/usr/bin/env python
"""Simple test of the Amp calculator, using Gaussian descriptors and neural
network model. Randomly generates data with the EMT potential in MD
simulations."""

(continues on next page)
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from ase.calculators.emt import EMT
from ase.build import fcc110
from ase import Atoms, Atom
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase import units
from ase.md import VelocityVerlet
from ase.constraints import FixAtoms

from amp import Amp
from amp.descriptor.gaussian import Gaussian
from amp.model.tflow import NeuralNetwork

def generate_data(count):
"""Generates test or training data with a simple MD simulation."""
atoms = fcc110('Pt', (2, 2, 2), vacuum=7.)
adsorbate = Atoms([Atom('Cu', atoms[7].position + (0., 0., 2.5)),

Atom('Cu', atoms[7].position + (0., 0., 5.))])
atoms.extend(adsorbate)
atoms.set_constraint(FixAtoms(indices=[0, 2]))
atoms.calc = EMT()
MaxwellBoltzmannDistribution(atoms, 300. * units.kB)
dyn = VelocityVerlet(atoms, dt=1. * units.fs)
newatoms = atoms.copy()
newatoms.calc = EMT()
newatoms.get_potential_energy()
images = [newatoms]
for step in range(count - 1):

dyn.run(50)
newatoms = atoms.copy()
newatoms.calc = EMT()
newatoms.get_potential_energy()
images.append(newatoms)

return images

def train_test():
label = 'train_test/calc'
train_images = generate_data(2)
convergence = {

'energy_rmse': 0.02,
'force_rmse': 0.02
}

calc = Amp(descriptor=Gaussian(),
model=NeuralNetwork(hiddenlayers=(3, 3),

→˓convergenceCriteria=convergence),
label=label,
cores=1)

calc.train(images=train_images,)
for image in train_images:

print "energy =", calc.get_potential_energy(image)
print "forces =", calc.get_forces(image)

if __name__ == '__main__':
(continues on next page)

46 Chapter 14. TensorFlow



Amp Documentation, Release 1.0.1

(continued from previous page)

train_test()

14.3 Known issues

• tflow module does not work for versions different from 0.11.0.

14.4 About

This module was contributed by Zachary Ulissi (Department of Chemical Engineering, Stanford University,
zulissi@gmail.com) with help, testing, and discussions from Andrew Doyle (Stanford) and the Amp development
team.
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CHAPTER 15

Bootstrap statistics

We have published a paper on systematically addressing uncertainty in atomistic machine learning, in which we
focused on a basic bootstrap ensemble method:

Peterson, Christensen, and Khorshidi, “Addressing uncertainty in atomistic machine learning”, PCCP
19:10978-10985, 2017.

A helper module to create bootstrap calculators, which are capable of giving not just a mean model prediction, but
uncertainty intervals, is described here. Note that you should use uncertainty intervals with caution, and, as we describe
in the above paper, the “correct” interpretation of seeing large uncertainty bounds for a particular atomic configuration
is that a new electronic structure calculation is required (at that configuration), and not that the true median will lie
within those bounds.

15.1 Training

The below script shows a simple example of creating a bootstrap ensemble of 10 calculators for a small sample training
set. (But you probably want an ensemble size much larger than 10 for reasonable statistics!)

from amp.utilities import Logger
from amp.stats.bootstrap import BootStrap

def generate_data(count, filename='training.traj'):
"""Generates test or training data with a simple MD simulation."""
import os
from ase import Atoms, Atom, units
import ase.io
from ase.calculators.emt import EMT
from ase.build import fcc110
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase.md import VelocityVerlet
from ase.constraints import FixAtoms
if os.path.exists(filename):

(continues on next page)
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return
traj = ase.io.Trajectory(filename, 'w')
atoms = fcc110('Pt', (2, 2, 2), vacuum=7.)
atoms.extend(Atoms([Atom('Cu', atoms[7].position + (0., 0., 2.5)),

Atom('Cu', atoms[7].position + (0., 0., 5.))]))
atoms.set_constraint(FixAtoms(indices=[0, 2]))
atoms.calc = EMT()
atoms.get_potential_energy()
traj.write(atoms)
MaxwellBoltzmannDistribution(atoms, 300. * units.kB)
dyn = VelocityVerlet(atoms, dt=1. * units.fs)
for step in range(count - 1):

dyn.run(50)
traj.write(atoms)

generate_data(5, 'training.traj')

calc_text = """
from amp import Amp
from amp.descriptor.gaussian import Gaussian
from amp.model.neuralnetwork import NeuralNetwork
from amp.model import LossFunction

calc = Amp(descriptor=Gaussian(),
model=NeuralNetwork(),
dblabel='../amp-db',
envcommand='loadamp')

calc.model.lossfunction = LossFunction(force_coefficient=0.,
convergence={'force_rmse': None})

"""

start_command = 'python run.py'

calc = BootStrap(log=Logger('bootstrap.log'))
calc.train(images='training.traj', n=10, calc_text=calc_text,

start_command=start_command, label='bootstrap')

Run the above script once and wait for it to finish (probably <1 minute). You will see lots of directories created
with the ensemble calculators. Run the same script again, and it will clean up / archive these directories into a
compressed (.tar.gz) file, and create a calculator parameters file called ‘bootstrap.ensemble’, which you can load with
Bootstrap(load=’bootstrap.ensemble’), as described later.

First, some notes on the above. The individual calculators are created with the calc_text variable in the above script;
you can modify things like neural network size or convergence criteria in this text block.

In the above, the optional start_command is the command to start the job, which defaults to “python run.py”. Here, it
runs each calculator’s training sequentially; that is, after one finishes it starts the next. If your machine has >10 cores,
or you don’t mind the training processes all competing for resources, you can have them all run in parallel by placing
an ampersand (in *nix systems) at the end of this line, that is “python run.py &”.

Most likely, you want to run this on a high-performance computing cluster that uses a queuing system. In this case,
start_command is your queuing command, for our SLURM system this is just

start_command = 'sbatch run.py'

If you need to supply headerlines to your queuing system, you can do them with something like the below.
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headerlines = """#SBATCH --time=00:30:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --partition=batch
"""

...

calc.train(images='training.traj', n=10, train_line=train_line,
calc_text=calc_text, headerlines=headerlines,
start_command=start_command, label='bootstrap')

In a similar way, you can also supply a custom train_line if necessary; see the module’s autodocumentation for details.

15.2 Loading and using

The bootstrap ensemble can be loaded via the calculator’s load keyword. The below script shows an example of
loading the calculator, and using it to predict the energies and the spread of the ensemble for the training images.

import ase.io
from amp.stats.bootstrap import BootStrap

calc = BootStrap(load='bootstrap.ensemble')

traj = ase.io.Trajectory('training.traj')

for image in traj:
energies = calc.get_potential_energy(image,

output=(0.05, 0.5, 0.95))
print(energies)
energy = image.get_potential_energy()
print(energy)

Note that the call to calc.get_potential_energy returns three energy predictions, at the 5th, 50th (median), and 95th
percentile, as specified with the tuple (0.05, 0.5, 0.95). When you run this, you should see that the median prediction
matches the true energy (from image.get_potential_energy) quite well, while the spread in the data is due to the sparsity
of data; as described in our paper above, this ensemble technique punishes regions of the potential energy surface with
infrequent data.

15.3 Hands-free training

In typical use, calling the train() method of the BootStrap class will spawn many independent training jobs.
Subsequent calls to train will help you manage those jobs: checking which have converged, checking which failed to
converge (and re-submitting them), checking which timed out (and re-submitting them), and, if all converged, creating
a bundled calculator. It can be most efficient to submit a (single-core) job that repeatedly calls this command for you
and acts as a job manager until all the training jobs are complete. This can be achieved by taking advantage of the
results dictionary returned by train, as in the below example script which uses SLURM environment commands.

#!/usr/bin/env python
#SBATCH --time=50:00:00
#SBATCH --nodes=1

(continues on next page)
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#SBATCH --ntasks-per-node=1
#SBATCH --partition=batch

import time
from amp.stats.bootstrap import BootStrap
from amp.utilities import Logger

calc_text = """
from amp import Amp
from amp.model.neuralnetwork import NeuralNetwork
from amp.descriptor.gaussian import Gaussian
from amp.model import LossFunction

calc = Amp(model=NeuralNetwork(),
descriptor=Gaussian(),
dblabel='../amp-db')

calc.model.lossfunction = LossFunction(convergence={'force_rmse': 0.02,
'force_maxresid': 0.03})

"""

headerlines = """#SBATCH --time=05:30:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --partition=batch
"""

start_command = 'sbatch run.py'

calc = BootStrap(log=Logger('bootstrap.log'))

complete = False
count = 0
while not complete:

results = calc.train(images='training.traj',
n=50,
calc_text=calc_text,
start_command=start_command,
label='bootstrap',
headerlines=headerlines,
expired=360.)

calc.log('train loop: ' + str(count))
count += 1
complete = results['complete']
time.sleep(120.)
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CHAPTER 16

Nearsighted force training

We have published a paper on the nearsighted force-training (NFT) approach, in which we used an ensemble-based
atomic uncertainty metric to systematically generate small structures to address uncertain local chemical environments:

Zeng, Chen and Peterson, “A nearsighted force-training approach to systematically generate training data
for the machine learning of large atomic structures “. JCP 156, 064104 (2022).

We introduce a module to train an ensemle of bootstrap calculators in an active learning scheme, which aims to address
uncertain local chemical environments in a large structure iteratively. We first train bootstrap calculators on an initial
training set comprising of simple bulk structures. Next, we quantify atomic uncertainties on a large target structure, as
the standard deviation of force predictions of the bootstrap calculators multiplied by a constant coefficient. We extract
atomic “chunks” centered on the most uncertain atoms, and evaluated those “chunks” by single point calculations. We
then extend the training set by the calculated “chunks”, and we retrain the bootstrap calculators until a certain stopping
criterion is satisfied. For the retraining with atomic “chunks”, it is crucial that only the forces on central atoms are
trained, which is the reason why this approach is termed as “nearsighted force training”.

16.1 Automatic protocol

The example script at below shows how to train bootstrap calculators based on the nearsighted force-training automatic
protocol.

from amp.nft.activelearner import NFT
from amp.utilities import Logger

calc_text = """
from amp import Amp
from amp.model import LossFunction
from amp.descriptor.gaussian import Gaussian
from amp.model.neuralnetwork import NeuralNetwork

hl = [5, 5]
calc = Amp(model=NeuralNetwork(hiddenlayers=hl),

descriptor=Gaussian(),

(continues on next page)
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dblabel='../amp-data')
calc.model.lossfunction = LossFunction(convergence={'energy_rmse': 0.001,

'force_rmse':0.005,
'force_maxresid': 0.02})

"""
al = NFT(stop_delta=0.02, max_iterations=20, steps_not_improved=2,

threshold=-0.9)

traj = 'initial_images.traj'
target_image = 'pt260.traj'
start_command = 'python run.py'

al.run(images=traj, target_image=target_image, n=10,
calc_text=calc_text, start_command=start_command,
parent_calc=EMT(), cutoff=6.5)

Once the active learning is stopped, the bootstrap calculators giving the best results will be saved as
best.[label].ensemble. The intermediate results will be saved inside the training folder in a folder named “saved-
info”, which includes the trajectory and indices of selected atomic chunks , and atomic uncertainties of the target
structure at each NFT iteration Indices and atomic uncertainties are saved in the ndarray format.

The active learning will be terminated if either condition at below is met—those conditions are supplied as parameters
for the :py:class:‘~amp.nft.activelearner.NFT‘class.

• stop_delta controls the convergence structure uncertainty (maximum atomic uncertainty in the target structure).

• max_iterations controls the maximum allowed number of NFT iterations.

• steps_not_improved defines the number of consecutive NFT iterations to stop the NFT procedure if the structure
uncertainty has not been improved.

The threshold controls the number of atomic “chunks” extracted from the target structure to be evaluated in single-
point calculations. For example, threshold=-0.9 indicates that “chunks” with the top 10% atomic uncertainties will be
calculated in electronic structures.

Calling run() method will spawn many independent training jobs, here n=10 jobs. Details of each job is given in
the calc_text, and the jobs are submitted with the start_command. For details about those two parameters, we refer
the readers to the documentation regarding the Bootstrap statistics. The initial bootstrap calculators are trained on
initial_images.traj, and the uncertainty evaluation is targeted on pt260.traj. The parent_calc is the electronic structure
method to perform single-point calculations on atomic “chunks”. The cutoff controls the range of atoms to be included
in an atomic “chunk”.
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CHAPTER 17

Fingerprint databases

Often, a user will want to train multiple calculators to a common set of images. This may be just in routine devel-
opment of a trained calculator (e.g., trying different neural network sizes), in using multiple training instances trying
to find a good initial guess of parameters, or in making a committee of calculators. In this case, it can be a waste of
computational time to calculate the fingerprints (and more expensively, the fingerprint derivatives) more than once.

To deal with this, Amp saves the fingerprints to a database, the location of which can be specified by the user. If you
want multiple calculators to avoid re-fingerprinting the same images, just point them to the same database location.

17.1 Format

The database format is custom for Amp, and is designed to be as simple as possible. Amp databases end in the
extension .ampdb. In its simplest form, it is just a directory with one file per image; that is, you will see something
like below:

label-fingerprints.ampdb/
loose/

f60b3324f6001d810afbab9f85a6ea5f
aeaaa21e5faccc62bae94c5c48b04031

In the above, each file in the directory “loose” is the hash of an image, and contains that image’s fingerprint. We use
a file-based “database” to avoid conflicts with multiple processes accessing a database at the same time, which can
cause conflicts.

However, for large training sets this can lead to lots of loose files, which can eat up a lot of memory, and with the large
number of files slow down indexing jobs (like backups and scans). Therefore, you can compress the database with the
amp-compress tool, described below.

17.2 Compress

To save disk space, you may periodically want to run the utility amp-compress (contained in the tools directory of
the amp package; this should be on your path for normal installations). In this case, you would run amp-compress
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<filename>, which would result in the above .ampdb file being changed to:

label-fingerprints.ampdb/
archive.tar.gz
loose/

That is, the two fingerprints that were in the “loose” directory are now in the file “archive.tar.gz”.

You can also use the –recursive (or -r) flag to compress all ampdb files in or below the specified directory.

When Amp reads from the above database, it first looks in the “loose” directory for the fingerprint. If it is not there, it
looks in “archive.tar.gz”. If it is not there, it calculates the fingerprint and adds it to the “loose” directory.

17.3 Future

We plan to make the amp-compress tool more automated. If the user does not supply a separate dblabel keyword, then
we assume that their process is the only process using the database, and it is safe to compress the database at the end
of their training job. This would automatically clean up the loose files at the end of the job.

56 Chapter 17. Fingerprint databases



CHAPTER 18

Fast Force Calls

Force calls (or potential-energy calls) are done inside Amp in a single thread, which means they should be fast com-
pared to something like DFT, but inherently much slower than an optimized molecular dynamics code. If you would
like to run big, fast simulations, it’s advisable to link the output of Amp to such a code, then run your simulation in a
molecluar dynamics code.

Here, we describe three ways to do fast force calls in Amp using n2p2, PROPhet/LAMMPS and KIM/LAMMPS
interface, respectively. As of this writing, the former two approaches are more stable.

18.1 Using n2p2

n2p2 is a ready-to-use software for high-dimensional neural network potentials, originally developed by Andreas
Singraber at the University of Vienna. Importantly, it provides python interface for fast predictions of energy and
forces, which makes it really easy to be incorporated into other python-based code, such as Amp. It also allows using
existing neural network potentials in LAMMPS. The LAMMPS NNP interface is detailed in the documentation.

The connection from Amp to n2p2’s fast force calls is made possible via a utility function amp.convert.
save_to_n2p2() written by Cheng Zeng (Brown). If you use this interface with Amp, please cite the n2p2 paper
in addition to the Amp paper:

Singraber, A.; Behler, J.; Dellago, C. Library-Based LAMMPS Implementation of High-Dimensional
Neural Network Potentials. J. Chem. Theory Comput. 2019, 15 (3), 1827–1840.

In the next, an example for using this interface is described. Suppose you have a trained Amp calculator saved as
“amp.amp”, and you want to predict on an image in a trajectory file ‘image.traj’, you can convert the Amp calculator
and the ASE trajectory to n2p2 input files by :

from amp import Amp
from amp.convert import save_to_n2p2
from ase.io import read

calc = Amp.load('amp.amp')
desc_pars = calc.descriptor.parameters

(continues on next page)
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model_pars = calc.model.parameters
atoms = read('image.traj')
save_to_n2p2(desc_pars, model_pars, images=atoms)

Then you can make prediction via the python interface shown below:

import pynnp

# Initialize NNP prediction mode.
p = pynnp.Prediction()
# Read settings and setup NNP.
p.setup()
# Read in structure.
p.readStructureFromFile()
# Predict energies and forces.
p.predict()
# Shortcut for structure container.
s = p.structure
print("------------")
print("Structure 1:")
print("------------")
print("numAtoms : ", s.numAtoms)
print("numAtomsPerElement : ", s.numAtomsPerElement)
print("------------")
print("Energy (Ref) : ", s.energyRef)
print("Energy (NNP) : ", s.energy)
print("------------")
forces = []
for atom in s.atoms:

print(atom.index, atom.f.r)

or simply use a command:

$ nnp-predict 1

18.2 Using PROPhet/LAMMPS

PROPhet was a nice atomistic machine-learning code developed by Brian Kolb and Levi Lentz in the group of Alexie
Kolpak at MIT.

// _____________________________________ _____ |
// ___/ __ \__/ __ \_/ __ \__/ __ \__/ /________/ / |
// __/ /_/ /_/ /_/ // / / /_/ /_/ /_/ __ \/ _ \/ __/ |
// _/ ____/_/ _, _// /_/ /_/ ____/_/ / / / __/ /_ |
// /_/ /_/ |_| \____/ /_/ /_/ /_/\___/\__/ |
//---------------------------------------------------------

Included in PROPhet was a potential that could be installed into LAMMPS (a very fast molecular dynamics code);
this potential allowed for neural-network potentials in the Behler–Parinello scheme to run in LAMMPS. If you
install this potential into your own copy of LAMMPS, you can then use the utility function amp.convert.
save_to_prophet() to output your data in a format where you can use LAMMPS for your force calls.

The work of making the connection from Amp to PROPhet’s LAMMPS potential was done by Efrem Braun (Berke-
ley), Levi Lentz (MIT), and August Edwards Guldberg Mikkelsen (DTU). If you use this interface with Amp, please
cite the PROPhet paper in addition to the Amp paper in any publications that result:
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Kolb, Lentz & Kolpak, “Discovering charge density functionals and structure-property relationships with
PROPhet: A general framework for coupling machine learning and first-principles methods”, Scientific
Reports 7:1192, 2017.

The instructions below assume you are on a linux-like system and have Amp already installed. It also uses git to
download codes and change branches. Create a folder, where everything will be stored called (e.g., LAMPHET) and
go into it:

$ mkdir LAMPHET
$ cd LAMPHET

Download the latest stable LAMMPS version into the LAMPHET directory:

$ git clone https://github.com/lammps/lammps.git

For this purpose, we will not be using the PROPhet version from the official repository, but instead from this fork.
Download it and then change to the amp compatible branch:

$ git clone https://github.com/Augustegm/PROPhet.git
$ cd PROPhet
$ git checkout amp_compatible

Now we need to set the following environment variables in our .bashrc:

export LAMPHET=path_to_your_codes/LAMPHET
export PROPhet_DIR=$LAMPHET/PROPhet/src
export LAMMPS_DIR=$LAMPHET/lammps/src
export PATH=$PATH:$LAMMPS_DIR
export PYTHONPATH=$LAMPHET/lammps/python:$PYTHONPATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$LAMPHET/lammps/src

The next step is to compile PROPhet. To do this correctly, you will need to first write the Makefile and then we will
manually edit it:

$ cd $PROPhet_DIR
$ ./configure --prefix=$LAMPHET/prophet-install --enable-lammps=$LAMMPS_DIR

Append -fPIC to line 8 in the Makefile. It should look like one of the two lines below:

CFLAGS =-O3 -DUSE_MPI -fPIC
CFLAGS =-O3 -fPIC

Now build PROPhet by typing:

$ make

The next step is to compile LAMMPS. To do this we first need to copy over a file from PROPhet:

$ cd $LAMMPS_DIR
$ cp $PROPhet_DIR/pair_nn.h .

We also need to change some lines in the Makefile.package.empty file. Edit lines 4-6 to:

PKG_INC = -I$(PROPhet_DIR)
PKG_PATH = -L$(PROPhet_DIR)
PKG_LIB = -lPROPhet_lammps
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Now we can compile LAMMPS. It is recommended to compile it in the four different ways giving a serial and parallel
version as well as shared library versions, which are needed if one wants to use it from Python (needed for using the
LAMMPS interface in ASE):

$ make serial
$ make mpi
$ make serial mode=shlib
$ make mpi mode=shlib

18.3 Using OpenKIM

Note: The forces predicted with the KIM approach may not be compatible with Amp forces as described in these
merge-request comments. Use this approach with caution.

Machine-learning parameters trained in Amp can be used to perform fast molecular dynamics simulations, via the
Knowledge Base for Interatomic Models (KIM). LAMMPS recognizes kim as a pair style that interfaces with the KIM
repository of interatomic potentials.

To build LAMMPS with the KIM package you must first install the KIM API (library) on your system. Below are
the minimal steps you need in order to install the KIM API. After KIM API is installed, you will need to install
LAMMMPS from its github repository. Finally we will need to install the model driver that is provided in the Amp
repository. In the followings we discuss each of these steps.

In this installation instruction, we assume that the following requirements are installed on your system:

• git

• make

• cmake (If it is not installed on your system see here.)

• GNU compilers (gcc, g++, gfortran) version 4.8.x or higher.

18.3.1 Installation of KIM API

You can follow the instructions given at the OpenKIM github repository to install KIM API. In short, you need to
clone the repository by:

$ git clone https://github.com/openkim/kim-api.git

Next do the following:

$ cd kim-api-master && mkdir build && cd build
$ FC=gfortran-4.8 cmake .. -DCMAKE_BUILD_TYPE=Release
$ make
$ sudo make install
$ sudo ldconfig

The second line forces cmake to use gfortran-4.8 as the fortran compiler. We saw gfortran-5 throws error “Error:
TS 29113/TS 18508: Noninteroperable array” but gfortran-4.8 should work fine. Now you can list model and model
drivers available in KIM API by:

$ kim-api-collections-management list

or install and remove models and model drivers, etc. For a detailed explanation of possible options see here.
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18.3.2 Building LAMMPS

Clone LAMMPS source files from the github repository:

$ git clone https://github.com/lammps/lammps.git

Now you can do the following to build LAMMPS:

$ cd lammps && mkdir build && cd build
$ cmake -D CMAKE_C_COMPILER=gcc -D CMAKE_CXX_COMPILER=g++ -D CMAKE_Fortran_
→˓COMPILER=gfortran -D PKG_KIM=on -D KIM_LIBRARY=$"/usr/local/lib/libkim-api.so" -D
→˓KIM_INCLUDE_DIR=$"/usr/local/include/kim-api" ../cmake
$ make

18.3.3 Installation of amp_model_driver

Now you are ready to install the amp_model_driver provided on this repository. To do that first change to amp-kim
directory by:

$ cd /amp_directory/amp/tools/amp-kim/

where amp_directory is where your Amp source files are located.

Then make a copy of the fortran modules inside the amp_model_driver directory by:

$ cp ../../amp/descriptor/gaussian.f90 amp_model_driver/gaussian.F90
$ cp ../../amp/descriptor/cutoffs.f90 amp_model_driver/cutoffs.F90
$ cp ../../amp/model/neuralnetwork.f90 amp_model_driver/neuralnetwork.F90

Finally you can install the amp_model_driver by:

$ kim-api-collections-management install user ./amp_model_driver

You can now remove the fortran modules that you copied earlier:

$ rm amp_model_driver/gaussian.F90
$ rm amp_model_driver/cutoffs.F90
$ rm amp_model_driver/neuralnetwork.F90

18.3.4 Installation of amp_parametrized_model

Now that you have amp_model_driver installed, you need to install the parameters also as the final step. Note that
this is the only step that you need to repeat when you change the parameters of the machine-learning model.
You should first parse all of the parameters of your Amp calculator to a text file by:

from amp import Amp
from amp.convert import save_to_openkim

calc = Amp(...)
calc.train(...)
save_to_openkim(calc)

where the last line parses the parameters of the calc object into a text file called amp.params.

You should then copy the generated text file into the amp_parameterized_model sub-directory of the Amp source
directory:
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$ cp /working_directory/amp.params amp_directory/amp/tools/amp-kim/amp_parameterized_
→˓model/.

where working_directory is where amp.params is located initially, and amp_directory is the directory of the Amp
source files. Finally you change back to the amp-kim directory by:

$ cd /amp_directory/amp/tools/amp-kim/

Note that installation of amp_parameterized_model will not work without amp.params being located in the
/amp_directory/amp/tools/amp-kim/amp_parameterized_model directory. Next install your parameters by:

$ kim-api-collections-management install user ./amp_parameterized_model

Congrats! Now you are ready to use the Amp calculator with amp.params in you molecular dynamics simulation by
an input file like this:

variable x index 1
variable y index 1
variable z index 1

variable xx equal 10*$x
variable yy equal 10*$y
variable zz equal 10*$z

units metal
atom_style atomic

lattice fcc 3.5
region box block 0 ${xx} 0 ${yy} 0 ${zz}
create_box 1 box
create_atoms 1 box
mass 1 1.0

velocity all create 1.44 87287 loop geom

pair_style kim amp_parameterized_model
pair_coeff * * Pd

neighbor 0.3 bin
neigh_modify delay 0 every 20 check no

fix 1 all nve

run 10

which, for example, is an input script for LAMMPS to do a molecular dynamics simulation of a Pd system for 10 units
of time.
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CHAPTER 19

Development

This page contains standard practices for developing Amp, focusing on repositories and documentation.

19.1 Official repository

The official Amp repository lives on bitbucket, andrewpeterson/amp . We employ a branching model where the master
branch is the main development branch, containing day-to-day commits from the core developers and honoring merge
requests from others. From time to time, we create a new branch that corresponds to a release. This release branch
contains only the tagged release and any bug fixes.

19.2 Contributing

You are welcome to contribute new features, bug fixes, better documentation, etc., to Amp. If you would like to
contribute, please create a private fork and a branch for your new commits. When it is ready, send us a merge request.
We follow the same basic model as ASE. Please see the ASE documentation for complete instructions; a summary is
also listed below.

As good coding practice, make sure your code passes both the pyflakes and pep8 tests. (On linux, you should be able
to run pyflakes file.py and pep8 file.py; then correct your code until the warnings disappear.) If adding a new feature:
please add a (very brief) test to the tests folder to ensure your new code continues to work as the project evolves, and
also be sure to write clear documentation. Finally, to make users aware of your new feature or change, add a bullet
point to the release notes page of the documentation under the Development version heading.

It is also a good idea to send us an email if you are planning something complicated.
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19.3 Your fork and branches

If you would like to contribute, here is our recommended way of using git to ultimately create a merge request that
contains all of your changes to be included in Amp.

Initial setup. First, create an account on bitbucket, and from the official Amp repository click the button to create a
fork into your own account. From the website for your fork, find the button to clone it, and use this to create a copy
on your own filesystem. This means you will run a command similar to this on your own machine:

git clone git@bitbucket.org:myusername/amp.git

On your local computer, the term “origin” will refer to your own fork of Amp; we will also need to be able to access
the original fork; we’ll name this “upstream” and link it with a command like:

git remote add upstream git@bitbucket.org:andrewpeterson/amp.git

You can check that the above makes sense by running git remote -v.

Making changes. Before making any changes, it’s a good idea to make sure your local copy is up-to-date with the
parent fork. You can do this with

git checkout master # Make sure we are on the right branch.
git pull upstream master

To make changes, first create a local branch with a descriptive name, for example “fix-fingerprints”. You can do this
with

git checkout -b fix-fingerprints

Your local code is now in a new branch, which you can verify by typing git status (or git branch to see all your
branches). Now, go ahead and edit your code and commit your changes with git commit. You can make as many
commits to your local copy as you like as you develop. When you think your code is ready to be part of the official
Amp repository, first make sure it is still up-to-date with the upstream repository, then push your branch to your own
fork:

git pull upstream master
git push origin fix-fingerprints

Now you are ready to put in a merge request. You will likely see a local message telling you how to do this after you
push, but if not, just go to your own bitbucket page, open the branch there, and look for a button for a merge request.
Type a clear description and submit.

If you’d like to discuss some aspects of your code before it is ready, you can do the above but prefix the merge request
title with “WIP: ” (work in progress). Then others can review your code before you submit it officially.

19.4 Documentation

This documentation is built with sphinx. (Mkdocs doesn’t seem to support autodocumentation.) To build a local copy,
cd into the docs directory and try a command such as

sphinx-build . /tmp/ampdocs
firefox /tmp/ampdocs/index.html & # View the local copy.

This uses the style “bizstyle”; if you find this is missing on your system, you can likely install it with
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pip install --user sphinxjp.themes.bizstyle

You should then be able to update the documentation rst files and see changes on your own machine. For line breaks,
please use the style of containing each sentence on a new line.

19.5 Releases

To create a release, we go through the following steps.

• Reserve a DOI for the new release via zenodo.org. Do this by creating a new upload, and choosing “pre-reserve”
before adding any files.

• Prepare the master branch for the release. (1) Update Release Notes, where the changes should have been
catalogued under a “Development version” heading; move these to a new heading for this release, along with a
release date and the DOI from above. (2) Also note the latest stable release on the index.rst page.

• Create a new branch on the bitbucket repository with the version name, as in v0.5. (Don’t create a separate
branch if this is a bugfix release, e.g., 0.5.1 — just add those to the v0.5 branch.) Note the branch name starts
with “v”, while the tag names will not, to avoid naming conflicts.

• Check out the new branch to your local machine (e.g., git fetch && git checkout v0.5). All subsequent work is
in the new branch.

• Change amp/VERSION to reflect the release number (without ‘beta’). Note this will automatically change it in
docs/conf.py, the Amp log files, and setup.py.

• On the Release Notes page, delete the “Development version” heading.

• Commit and push the changes to the new branch on bitbucket.

• Tag the release with the release number, e.g., ‘0.5’ or ‘0.5.1’, the latter being for bug fixes. Do this on a local
machine (on the correct branch) with git tag -a 0.5, followed by git push origin –tags.

• Add the version to readthedocs’ available versions; also set it as the default stable version. (This may already
be done automatically.)

• Upload an archive and finalize the DOI via zenodo.org. Note that all the “.git” files and folders should be
removed from the .tar.gz archive before uploading to Zenodo.

• Prepare and upload to PyPI (for pip):

$ python3 setup.py sdist
$ twine upload dist/*

• Send a note to the amp-users list summarizing the release.

• In the master branch, update the VERSION file to reflect the new beta version.

Module autodocumentation:
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CHAPTER 20

Main

This module is the main part of the Amp package.

20.1 Module contents

67



Amp Documentation, Release 1.0.1

68 Chapter 20. Main



CHAPTER 21

Descriptor

The descriptor module contains methods for describing the local atomic environment; that is, feature fectors that can
be fed to machine-learning modules.

21.1 Gaussian

21.2 Zernike

21.3 Bispectrum

21.4 Cutoff functions

21.5 Example

(This contains just a minimal example of how to build your own descriptor.)
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CHAPTER 22

Model

This module is designed to include machine-learning models for interpolating energies and forces from either an
atom-centered or image-centered fingerprint description.

22.1 Model

22.2 Neural Network

22.3 Tensorflow Neural Network

A work in progress, this module amp.model.tflow uses Google’s TensorFlow package to implement a neural network,
which may provide GPU acceleration and other advantages.
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CHAPTER 23

Regression

This module includes a regressor object used to optimize the parameters of the machine-learning model.

23.1 Module contents
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CHAPTER 24

Utilities

This module contains utilities for use with various aspects of the Amp calculator.

24.1 Module contents
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CHAPTER 25

Analysis

Tools for analysis of output exist here.

25.1 Module contents
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CHAPTER 26

Stats

The stats module contains a bootstrap method for addresssing uncertainty.

26.1 Bootstrap
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CHAPTER 27

Convert

Tools for interconverting data between codes.

27.1 Module contents
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CHAPTER 28

Preprocess

The preprocess module contains methods for image and feature selections.

28.1 Image selection

28.2 Feature selection

83



Amp Documentation, Release 1.0.1

84 Chapter 28. Preprocess



CHAPTER 29

Nft

The nft module contains methods for generating initial images, and the active learning protocol based on the near-
sighted force-training approach.

29.1 Initialization

29.2 NFT active learning

Indices and tables

• genindex

• modindex

• search
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