
Amp Documentation
Release 0.4

Andrew A. Peterson, Alireza Khorshidi

February 24, 2017

Contents

1 Introduction 3

2 Installation 5
2.1 Install ASE . 5
2.2 Check out the code . 5
2.3 Set the environment . 5
2.4 Recommended step: Fortran modules . 6
2.5 Recommended step: Run the tests . 6

3 How to use Amp? 7
3.1 Initializing Amp . 7
3.2 Starting from old parameters . 7
3.3 Training Amp . 8
3.4 Growing your train set . 8
3.5 Using trained Amp . 8
3.6 Complete example . 8

4 Theory 11
4.1 Atomic representation of potential energy . 11
4.2 Descriptor . 11
4.3 Regression Model . 13

5 Parallel Computing 15

6 Development 17
6.1 Repositories and branching . 17
6.2 Contributing . 17
6.3 Documentation . 17

7 Main 19
7.1 Module contents . 19

8 Descriptor 21
8.1 Module contents . 21

9 Regression 23
9.1 Module contents . 23

10 Utilities 25

i

10.1 Module contents . 25

11 Analysis 27
11.1 Module contents . 27

12 Indices and tables 29

ii

Amp Documentation, Release 0.4

Welcome to Amp documentation! This project is being developed at Brown University in the School of Engineering,
primarily by Andrew Peterson and Alireza Khorshidi, and is released under the GNU General Public License. This
is a relatively new project, so things are constantly changing!

(Note that Amp is built off of our previous project, Neural. You may still find Neural at our bitbucket page.)

Table of Contents:

Contents 1

https://bitbucket.org/andrewpeterson/neural

Amp Documentation, Release 0.4

2 Contents

CHAPTER 1

Introduction

Amp is an open-source package designed to easily bring machine-learning to atomistic calculations. This allows
one to predict (or really, interpolate) calculations on the potential energy surface, by first building up a regression
representation of a “train set” of atomic images. Amp calculator works by first learning from any other calculator
(usually quantum mechanical calculations) that can provide energy and forces as a function of atomic coordinates. In
theory, these predictions can take place with arbitrary accuracy approaching that of the original calculator.

Amp is designed to integrate closely with the Atomic Simulation Environment (ASE). As such, the interface is in
pure python, although several compute-heavy parts of the underlying codes also have fortran versions to accelerate the
calculations. The close integration with ASE means that any calculator that works with ASE - including EMT, GPAW,
DACAPO, VASP, NWChem, and Gaussian - can easily be used as the parent method.

3

https://bitbucket.org/andrewpeterson/amp
https://wiki.fysik.dtu.dk/ase/

Amp Documentation, Release 0.4

4 Chapter 1. Introduction

CHAPTER 2

Installation

AMP is python-based and is designed to integrate closely with the Atomic Simulation Environment (ASE). In its most
basic form, it has few requirements:

• Python, version 2.7 is recommended

• ASE

• NumPy (>= 1.9 for saving data in ”.db” database format)

• SciPy

Install ASE

We always test against the latest version (svn checkout) of ASE, but slightly older versions (>=3.9.0) are likely to
work as well. Follow the instructions at the ASE website. ASE itself depends upon python with the standard numeric
and scientific packages. Verify that you have working versions of NumPy and SciPy. We also recommend matplotlib
in order to generate plots.

Check out the code

As a relatively new project, it may be preferable to use the development version rather than “stable” releases, as
improvements are constantly being made and features added. We run daily unit tests to make sure that our development
code works as intended. We recommend checking out the latest version of the code via the project’s bitbucket page. If
you use git, check out the code with:

$ cd ~/path/to/my/codes
$ git clone git@bitbucket.org:andrewpeterson/amp.git

where you should replace ‘~/path/to/my/codes’ with wherever you would like the code to be located on your computer.
If you do not use git, just download the code as a zip file from the project’s download page, and extract it into
‘~/path/to/my/codes’. Please make sure that the folder ‘~/path/to/my/codes/amp’ includes the script ‘__init__.py’ as
well as the folders ‘descriptor’, ‘regression’, ... At the download page, you can also find historical numbered releases.

Set the environment

You need to let your python version know about the existence of the amp module. Add the following line to your
‘.bashrc’ (or other appropriate spot), with the appropriate path substituted for ‘~/path/to/my/codes’:

5

https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/download.html
http://numpy.org
http://scipy.org
http://matplotlib.org
https://bitbucket.org/andrewpeterson/amp/
https://bitbucket.org/andrewpeterson/amp/downloads

Amp Documentation, Release 0.4

$ export PYTHONPATH=~/path/to/my/codes:$PYTHONPATH

You can check that this works by starting python and typing the below command, verifying that the location listed
from the second command is where you expect:

>>> import amp
>>> print(amp.__file__)

Recommended step: Fortran modules

The code is designed to work in pure python, which makes it is easier to read, develop, and debug. However, it will
be annoyingly slow unless you compile the associated fortran modules which speed up some crucial parts of the code.
The compilation of Fortran codes and integration with the python parts is accomplished with the command ‘f2py’,
which is part of NumPy. A Fortran compiler will also be necessary on your system; a reasonable open-source option is
GNU Fortran, or gfortran. This complier will generate Fortran modules (.mod). gfortran will also be used by f2py to
generate extension module ‘fmodules.so’ on Linux or ‘fmodules.pyd’ on Windows. In order to prepare the extension
module take the following steps:

• Compile regression Fortran subroutines inside the regression folder by:

$ cd ~/path/to/my/codes/regression/
$ gfortran -c neuralnetwork.f90

• Move the module ‘regression.mod’ created in the last step, to the parent directory by:

$ mv regression.mod ../

• Compile the main Fortran subroutines in the parent directory in companian with the descriptor and regression
subroutines by something like:

$ f2py -c -m fmodules main.f90 descriptor/gaussian.f90 regression/neuralnetwork.f90

or on a Windows machine by:

$ f2py -c -m fmodules main.f90 descriptor/gaussian.f90 regression/neuralnetwork.f90 --fcompiler=gnu95 --compiler=mingw32

If you update the code and your fmodules extension is not updated, an exception will be raised, telling you to re-
compile.

Recommended step: Run the tests

We include tests in the package to ensure that it still runs as intended as we continue our development; we run these
tests on the latest build every night to try to keep bugs out. It is a good idea to run these tests after you install the
package to see if your installation is working. The tests are in the folder tests; they are designed to run with nose. If
you have nose installed, run the commands below:

$ mkdir /tmp/amptests
$ cd /tmp/amptests
$ nosetests ~/path/to/my/codes/amp/tests

6 Chapter 2. Installation

https://nose.readthedocs.org/

CHAPTER 3

How to use Amp?

Amp can look at the atomic system in two different schemes. In the first scheme, the atomic system is looked at as
a whole. The consequent potential energy surface approximation is valid only for systems with the same number of
atoms and identities. In other words the learned potential is size-dependent. On the other hand, in the second scheme,
Amp looks at local atomic environments, ending up with a learned potential which is size-independent, and can be
simultaneously used for systems with different sizes. The user should first determine which scheme is of interest.

Initializing Amp

The calculator as well as descriptors and regressions should be first imported by:

>>> from amp import Amp
>>> from amp.descriptor import *
>>> from amp.regression import *

Then Amp is initiated with a descriptor and a regression algorithm, e.g.:

>>> calc = Amp(descriptor=Gaussian()
regression=NeuralNetwork())

The values of arguments shown above are the default values in the current release of Amp. A size-dependent scheme
can be simply taken by descriptor=None. Optional arguments for initializing Amp can be reviewed at main
methods.

Starting from old parameters

The parameters of the calculator are saved after training so that the calculator can be re-established for future calcu-
lations. If the previously trained parameter file is named ‘old.json’, it can be introduced to Amp to take those values
with something like:

>>> calc = Amp(load='old.json', label='new')

The label (‘new’) is used as a prefix for any output from use of this calculator. In general, the calculator is written
to not overwrite your old settings, but it is a good idea to have a different name for this label to avoid accidentally
overwriting your carefully trained calculator’s files!

7

Amp Documentation, Release 0.4

Training Amp

Training a new calculator instance occurs with the train method, which is given a list of train images and desired values
of root mean square error (rmse) for forces and atomic energy as below:

>>> calc.train(images, energy_goal=0.001, force_goal=0.005)

Calling this method will generate output files where you can watch the progress. Note that this is in general a
computationally-intensive process! These two parameters as well as other optional parameters are described at.

In general, we plan to make the ASE database the recommended data type. However, this is a work in progress over
at ASE.

Growing your train set

Say you have a nicely trained calculator that you built around a train set of 10,000 images, but you decide you want to
add another 1,000 images to the train set. Rather than starting training from scratch, it can be faster to train from the
previous optimum. This is fairly simple and can be accomplished as:

>>> calc = Amp(load='old_calc', label='new_calc')
>>> calc.train(all_images)

In this case, ‘all_images’ contains all 11,000 images (the old set and the new set).

If you are training on a large set of images, a building-up strategy can be effective. For example, to train on 100,000
images, you could first train on 10,000 images, then add 10,000 images to the set and re-train from the previous
parameters, etc. If the images are nicely randomized, this can give you some confidence that you are not training
inside too shallow of a basin. The first images set, which you are starting from, had better be representative of the
verity of all images you will add later.

Using trained Amp

The trained calculator can now be used just like any other ASE calculator, e.g.:

>>> atoms = ...
>>> atoms.set_calculator(calc)
>>> energy = atoms.get_potential_energy()

where ‘atoms’ is an atomic configuration not necessarily included in the train set.

Complete example

The script below shows an example of training Amp. This script first creates some sample data using a molecular
dynamics simulation with the cheap EMT calculator in ASE. The images are then randomly divided into “train”
and “test” data, such that cross-validation can be performed. Then Amp is trained on the train data. After this, the
predictions of the Amp are compared to the parent data for both the train and test set. This is shown in a parity plot,
which is saved to disk.

from ase.lattice.surface import fcc110
from ase import Atom, Atoms
from ase.constraints import FixAtoms
from ase.calculators.emt import EMT

8 Chapter 3. How to use Amp?

https://wiki.fysik.dtu.dk/ase/ase/db/db.html

Amp Documentation, Release 0.4

from ase.md import VelocityVerlet
from ase.md.velocitydistribution import MaxwellBoltzmannDistribution
from ase import units
from ase import io

from amp.utilities import randomize_images
from amp import Amp
from amp.descriptor import *
from amp.regression import *

###

def test():

Generate atomic system to create test data.
atoms = fcc110('Cu', (2, 2, 2), vacuum=7.)
adsorbate = Atoms([Atom('H', atoms[7].position + (0., 0., 2.)),

Atom('H', atoms[7].position + (0., 0., 5.))])
atoms.extend(adsorbate)
atoms.set_constraint(FixAtoms(indices=[0, 2]))
calc = EMT() # cheap calculator
atoms.set_calculator(calc)

Run some molecular dynamics to generate data.
trajectory = io.Trajectory('data.traj', 'w', atoms=atoms)
MaxwellBoltzmannDistribution(atoms, temp=300. * units.kB)
dynamics = VelocityVerlet(atoms, dt=1. * units.fs)
dynamics.attach(trajectory)
for step in range(50):

dynamics.run(5)
trajectory.close()

Train the calculator.
train_images, test_images = randomize_images('data.traj')

calc = Amp(descriptor=Behler(),
regression=NeuralNetwork())

calc.train(train_images, energy_goal=0.001, force_goal=None)

Plot and test the predictions.
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot

fig, ax = pyplot.subplots()

for image in train_images:
actual_energy = image.get_potential_energy()
predicted_energy = calc.get_potential_energy(image)
ax.plot(actual_energy, predicted_energy, 'b.')

for image in test_images:
actual_energy = image.get_potential_energy()
predicted_energy = calc.get_potential_energy(image)
ax.plot(actual_energy, predicted_energy, 'r.')

ax.set_xlabel('Actual energy, eV')

3.6. Complete example 9

Amp Documentation, Release 0.4

ax.set_ylabel('Amp energy, eV')

fig.savefig('parityplot.png')

###

if __name__ == '__main__':
test()

Note that most of the script is just creating the train set or analyzing the results – the actual Amp initialization and
training takes place on just two lines in the middle of the script. The figure that was produced is shown below. As both
the generated data and the initial guess of the training parameters are random, this will look different each time this
script is run.

10 Chapter 3. How to use Amp?

CHAPTER 4

Theory

According to Born-Oppenheimer approximation, the potential energy of an atomic configuration can be assumed as
a function of only nuclei positions. Potential energy is in general a very complicated function that in theory can be
found by directly solving the Schrodinger equation. However, in practice, exact analytical solution to the many-body
Schrodinger equation is very difficult (if not impossible). Taking into account this fact, the idea is then to approximate
the potential energy with a regression model:

R regression−−−−−→ 𝐸 = 𝐸(R),

where R is the position of atoms in the system.

Atomic representation of potential energy

In order to have a potential function which is simultaneously applicable to systems of different sizes, the total potential
energy of the system can to be broken up into atomic energy contributions:

𝐸(R) =

𝑁∑︁
atom=1

𝐸atom(R).

The above expansion can be justified by assembling the atomic configuration by bringing atoms close to each other
one by one. Then the atomic energy contributions can be approximated using a regression method:

R regression−−−−−→ 𝐸atom = 𝐸atom (R) .

Descriptor

A better interpolation can be achieved if an appropriate symmetry function G of atomic coordinates, approximating
the functional dependence of local energetics, is used as the input of regression operator:

R G−→ G (R)
regression−−−−−→ 𝐸atom = 𝐸atom (G (R)) .

Gaussian

Gaussian descriptor G as a function of pair-atom distances and three-atom angles, has been suggested by Behler [1],
and is implemented within Amp. Radial fingerprint of Gaussian type captures interaction of atom 𝑖 with all atoms 𝑗 as

11

Amp Documentation, Release 0.4

the sum of Gaussians with width 𝜂 and center 𝑅𝑠,

𝐺𝐼
𝑖 =

atoms j within 𝑅𝑐
distance of atom i∑︁

𝑗 ̸=𝑖

𝑒−𝜂(𝑅𝑖𝑗−𝑅𝑠)
2/𝑅2

𝑐𝑓𝑐 (𝑅𝑖𝑗).

The next type is the angular fingerprint accounting for three-atom interactions. Gaussian angular fingerprint is com-

puted for all triplets of atoms 𝑖, 𝑗, and 𝑘 by summing over the cosine values of the angles 𝜃𝑖𝑗𝑘 = cos−1

(︂
R𝑖𝑗 .R𝑖𝑘

𝑅𝑖𝑗𝑅𝑖𝑘

)︂
,

(R𝑖𝑗 = R𝑖 − R𝑗), centered at atom 𝑖, according to

𝐺𝐼𝐼
𝑖 = 21−𝜁

atoms j, k within 𝑅𝑐
distance of atom i∑︁
𝑗, 𝑘 ̸= 𝑖
(𝑗 ̸= 𝑘)

(1 + 𝜆 cos 𝜃𝑖𝑗𝑘)
𝜁
𝑒−𝜂(𝑅2

𝑖𝑗+𝑅2
𝑖𝑘+𝑅2

𝑗𝑘)/𝑅
2
𝑐𝑓𝑐 (𝑅𝑖𝑗) 𝑓𝑐 (𝑅𝑖𝑘) 𝑓𝑐 (𝑅𝑗𝑘),

with parameters 𝜆, 𝜂, and 𝜁. The function 𝑓𝑐 (𝑅𝑖𝑗) in the above equations is the cutoff function defining the energet-
ically relevant local environment with value one at 𝑅𝑖𝑗 = 0 and zero at 𝑅𝑖𝑗 = 𝑅𝑐, where 𝑅𝑐 is the cutoff radius. In
order to have a continuous force-field, the cutoff function 𝑓𝑐 (𝑅𝑖𝑗) as well as its first derivative should be continuous
in 𝑅𝑖𝑗 ∈ [0,∞). One possible expression for such a function as proposed by Behler [1] is

𝑓𝑐 (𝑅𝑖𝑗) ==

⎧⎨⎩ 0.5

(︂
1 + cos

(︂
𝜋
𝑅𝑖𝑗

𝑅𝑐

)︂)︂
for 𝑅𝑖𝑗 ≤ 𝑅𝑐,

0 for 𝑅𝑖𝑗 > 𝑅𝑐.

Figure below shows how components of fingerprints G𝐼
𝑖 and G𝐼𝐼

𝑖 change with, respectively, distance 𝑅𝑖𝑗 between pair
atoms 𝑖 and 𝑗 and valence angle 𝜃𝑖𝑗𝑘 between triplet of atoms 𝑖, 𝑗, and 𝑘 with central atom 𝑖:

Zernike

Three-dimensional Zernike descriptor is also available inside Amp, and can be used as the atomic environment de-
scriptor. Zernike-type descriptor has been previously used in the machine-learning community extensively, but it has
been suggested here as the first time for representing chemical local environment. Zernike moments are basically a
tensor product between spherical harmonics complete and orthogonal on the surface of unit sphere, and Zernike poly-
nomials complete and orthogonal within the unit sphere. Zernike descriptor components for each integer degree are
then defined as the norm of Zernike moments with the same corresponding degree. For more details on the Zernike
descriptor the reader is referred to the nice paper of Novotni and Klein [2].

Inspired by Bartok et. al. [3], to represent the local chemical environment of atom 𝑖, an atomic density function 𝜌𝑖(r)
is defined for each atomic local environment as the sum of delta distributions shifted to atomic positions:

𝜌𝑖(r) =

atoms j within 𝑅𝑐
distance of atom i∑︁

𝑗 ̸=𝑖

𝜂𝑗𝛿 (r−R𝑖𝑗) 𝑓𝑐 (‖R𝑖𝑗‖) ,

12 Chapter 4. Theory

Amp Documentation, Release 0.4

Next components of Zernike descriptor are computed from Zernike moments of the above atomic density destribution
for each atom 𝑖.

Figure below show how components of Zernike descriptor vary with pair-atom distance, three-atom angle, and four-
atom dehidral angle. It is important to note that components of the Gaussian descriptor discussed above are non-
sensitive to the four-atom dehidral angle of the following figure.

Bispectrum

Bispectrum of four-dimensional spherical harmonics have been suggested by Bartok et al. [3] to be invariant under
rotation of local atomic environment. In this approach, the atomic density distribution defined above is first mapped
onto the surface of unit sphere in four dimensions. Consequently, Bartok et al. have shown that the bispectrum of this
mapping can be used as atomic environment descriptor. We refer the reader to the original paper [3] for mathematical
details. Worth to mention that this approach of describing local environment is also available inside Amp.

Regression Model

The general purpose of the regression model 𝑥
regression−−−−−→ 𝑦 with input 𝑥 and output 𝑦 is to approximate the function

𝑦 = 𝑓(𝑥) by using sample train data points (𝑥𝑖, 𝑦𝑖). The intent is to later use the approximated 𝑓 for input data 𝑥𝑗

(other than 𝑥𝑖 in the train data set), and make predictions for 𝑦𝑗 . Typical regression models include, but are not limited
to, Gaussian processes, support vector regression, and neural network.

Neural network model

Neural network is basically a very simple model of how the nervous system processes information. The first mathe-
matical model was developed in 1943 by McCulloch and Pitts [4] for classification purposes; biological neurons either
send or do not send a signal to the neighboring neuron. The model was soon extended to do linear and nonlinear re-
gression, by replacing the binary activation function with a continuous function. The basic functional unit of a neural
network is called “node”. A number of parallel nodes constitute a layer. A feed-forward neural network consists of at
least an input layer plus an output layer. When approximating the PES, the output layer has just one neuron represent-
ing the potential energy. For a more robust interpolation, a number of “hidden layers” may exist in the neural network
as well; the word “hidden” refers to the fact that these layers have no physical meaning. A schematic of a typical
feed-forward neural network is shown below. In each node a number of inputs is multiplied by the corresponding
weights and summed up with a constant bias. An activation function then acts upon the summation and an output is
generated. The output is finally sent to the neighboring neuron in the next layer. Typically used activation functions are
hyperbolic tangent, sigmoid, Gaussian, and linear function. The unbounded linear activation function is particularly
useful in the last hidden layer to scale neural network outputs to the range of reference values. For our purpose, the
output of neural network represents energy of atomic system.

4.3. Regression Model 13

Amp Documentation, Release 0.4

References:

1. “Atom-centered symmetry functions for constructing high-dimensional neural network potentials”, J. Behler, J.
Chem. Phys. 134(7), 074106 (2011)

2. “Shape retrieval using 3D Zernike descriptors”, M. Novotni and R. Klein, Computer-Aided Design 36(11),
1047–1062 (2004)

3. “Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons”, A.P. Bart’ok,
M.C. Payne, R. Kondor and G. Csanyi, Physical Review Letters 104, 136403 (2010)

4. “A logical calculus of the ideas immanent in nervous activity”, W.S. McCulloch, and W.H. Pitts, Bull. Math.
Biophys. 5, 115–133 (1943)

14 Chapter 4. Theory

CHAPTER 5

Parallel Computing

As the number of atoms corresponding to data points (images) or the number of data points themselves in the train
data set increases, serial computing takes a long time, and thus, resorting to parallel computing becomes inevitable.
Two common approaches of parallel computing are either to parallelize over multiple threads or to parallelize over
multiple processes. In the former approach, threads usually have access to the same memory area, which can lead to
conflicts in case of improper synchronization. But in the second approach, separate memory locations are allocated
to each spawned process which avoids any possible interference between sub-tasks. Amp takes the second approach
via “multiprocessing”, a built-in module in Python 2.6 (and above) standard library. For details about multiprocessing
module, the reader is directed to multiprocessing documentation. Only local concurrency (multi-computing over local
cores) is possible in the current release of Amp. Amp starts with serial computing, but when arriving to calculating
atomic fingerprints and their derivatives, multiple processes are spawned each doing a sub-task on part of the atomic
configuration, and writing the results in temporary JSON files. Temporary files are next unified and saved in the script
directory. If Fortran modules are utilized, data of all images including real energies and forces, atomic identities, and
calculated values of fingerprints (as well as their derivatives and neighbor lists if force-training) are then reshaped
to rectangular arrays. Portions of the reshaped data corresponding to each process are sent to the copy of Fortran
modules at each core. Partial cost function and its derivative with respect to variables are calculated on each core,
and the calculated values are returned back to the main python code via multiprocessing “Queues”. The main python
code then adds up partial values. Amp automatically finds the number of requested cores, prints it out at the top of
“train-log.txt” script, and makes use of all of them. A schematic of how parallel computing is designed in Amp is
shown in the below figure. When descriptor is None, no fingerprint operation is carried out.

15

https://docs.python.org/2/library/multiprocessing.html

Amp Documentation, Release 0.4

16 Chapter 5. Parallel Computing

CHAPTER 6

Development

This page contains standard practices for developing Amp, focusing on repositories and documentation.

Repositories and branching

The main Amp repository lives on bitbucket, andrewpeterson/amp. We employ a branching model where the master
branch is the main development branch, containing day-to-day commits from the core developers and honoring merge
requests from others From time to time, we create a new branch that corresponds to a release. This release branch
contains only the tagged release and any bug fixes.

Contributing

You are welcome to contribute new features, bug fixes, better documentation, etc. to Amp. If you would like to
contribute, please create a private fork and a branch for your new commits. When it is ready, send us a merge request.
We follow the same basic model as ASE; please see the ASE documentation for complete instructions.

It is also a good idea to send us an email if you are planning something complicated.

Documentation

This documentation is built with sphinx. On your own computer, you can build a copy with a command like:

$ sphinx-build . /tmp/ampdocs/

List of All Methods:

17

Amp Documentation, Release 0.4

18 Chapter 6. Development

CHAPTER 7

Main

This module is the main part of Amp package.

Module contents

19

Amp Documentation, Release 0.4

20 Chapter 7. Main

CHAPTER 8

Descriptor

Methods for describing local atomic environment are included in this module.

Module contents

21

Amp Documentation, Release 0.4

22 Chapter 8. Descriptor

CHAPTER 9

Regression

This module includes methods for interpolating energies and forces with local atomic environment.

Module contents

23

Amp Documentation, Release 0.4

24 Chapter 9. Regression

CHAPTER 10

Utilities

This module contains utilities for use with various aspects of the Amp calculator.

Module contents

25

Amp Documentation, Release 0.4

26 Chapter 10. Utilities

CHAPTER 11

Analysis

Tools for analysis of output exist here.

Module contents

27

Amp Documentation, Release 0.4

28 Chapter 11. Analysis

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

29

	Introduction
	Installation
	Install ASE
	Check out the code
	Set the environment
	Recommended step: Fortran modules
	Recommended step: Run the tests

	How to use Amp?
	Initializing Amp
	Starting from old parameters
	Training Amp
	Growing your train set
	Using trained Amp
	Complete example

	Theory
	Atomic representation of potential energy
	Descriptor
	Regression Model

	Parallel Computing
	Development
	Repositories and branching
	Contributing
	Documentation

	Main
	Module contents

	Descriptor
	Module contents

	Regression
	Module contents

	Utilities
	Module contents

	Analysis
	Module contents

	Indices and tables

